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Abstract 

Background Cannabidiol (CBD) is the primary non-psychoactive component of cannabis. Consumption of CBD 
is increasing rapidly as it is federally legal and widely available in the United States, Europe, Mexico, Canada, and Asia. 
CBD is gaining traction in medical and biochemical research, though a comprehensive classification of CBD receptor 
interactions is yet to be elucidated.

Methods A comprehensive literature search across PubMed, Web of Science, and Google Scholar identified studies 
reporting cannabidiol (CBD) interactions with receptors, enzymes, and biological processes. Eligible articles included 
cell culture, animal model, biochemical, and clinical studies. Findings were thematically synthesized by body system, 
emphasizing mechanisms and implications for health and disease.

Results Herein, I compile the literature to date of known interactions between CBD and various receptors, enzymes, 
and processes. I discuss the impact of CBD exposure on multiple processes, including endocannabinoid receptors, 
ion channels, cytochrome 450 enzymes, inflammatory pathways, and sex hormone regulation. I explain the poten-
tial effects of CBD on psychiatric disorders, seizure activity, nausea and vomiting, pain sensation, thermal regulation, 
neuronal signaling, neurodegenerative diseases, reproductive aging, drug metabolism, inflammation, sex hormone 
regulation, and energy homeostasis.

Conclusions Understanding how CBD functions and how it can interact with other recreational or pharmaceutical 
medications is necessary for proper clinical management of patients who consume CBD.
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Introduction
Cannabis consumption is increasing rapidly in tandem 
with increased legalization and availability and decreased 
social stigma (Patrick et al. 2022). As of 2023, recreational 
cannabis consumption is legal in 24 states and medici-
nal cannabis is available in an additional 17 states in the 
United States (Marijuana legality by state - Updated Oct 

1, 2023. DISA 2025). In the United States, roughly 18% of 
the adult population report consuming cannabis, making 
it the most consumed federally illicit substance (Results 
from the 2019 National Survey on Drug Use and Health 
(NSDUH): Key Substance Use and Mental Health Indi-
cators in the United States | SAMHSA Publications and 
Digital Products n.d.). Cannabis products contain mul-
tiple component parts, including tetrahydrocannabinol 
(THC), cannabidiol (CBD), and minor cannabinoids 
and terpenes (Atakan 2012). CBD was removed from 
the federal schedule 1 drug classification in 2018 (Aber-
nethy 2019) and is now widely available in gas stations 
and grocery stores in all U.S. states. CBD consumption is 

*Correspondence:
Karli Swenson
Karli.Swenson@cuanschutz.edu
1 Department of Pediatrics, University of Colorado Anschutz Medical 
Campus, 13123 East 16 Ave B265, Aurora, CO 80045, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42238-025-00274-y&domain=pdf
http://orcid.org/0000-0003-0513-7308


Page 2 of 25Swenson  Journal of Cannabis Research            (2025) 7:24 

dramatically increasing both recreationally and medici-
nally (Goodman et  al. 2022). CBD has multiple medici-
nal effects, including as a nausea reducing medication, 
an anxiety reducing medication, a sleep aid (Rapin et al. 
2021), and one pharmaceutical CBD product, Epidiolex, 
is approved by the Food and Drug Administration (FDA) 
to treat severe childhood seizure (Abu-Sawwa et  al. 
2020). One inherent limitation with CBD research is the 
challenge of sourcing product that is pure, reliable, trans-
parent in dosing, and available for various administration 
routes. As the landscape of synthetic and hemp-derived 
CBD product changes in the early 2020’s, access to prod-
uct for research is an actively evolving field. Cannabidiol 
(CBD) has emerged as a highly popular and rapidly evolv-
ing area of research, with several comprehensive reviews 
published in recent years that explore its pharmacologi-
cal properties and therapeutic potential. Notable reviews, 
such as those by Sideris and Doan (2024), Castillo-Arel-
lano et al. (2023), and Vitale et al. (2021), have provided 
valuable insights into CBD’s effects, particularly its poly-
pharmacological actions in neuropsychiatric conditions 
(Sideris and Doan 2024; Castillo-Arellano et  al. 2023; 
Vitale et  al. 2021). These reviews focus on the complex 
interactions between CBD and various receptors, con-
tributing to its therapeutic effects in disorders like epi-
lepsy, anxiety, and depression. However, this manuscript 
expands upon these existing reviews by broadening the 
scope to include not only neuropsychiatric conditions 
but also multiple disease states and symptoms. By pre-
senting a comprehensive approach to CBD receptor 
activation across various pathologies, this review offers 
a more integrated understanding of how CBD can influ-
ence a wide range of therapeutic outcomes, making it a 
valuable addition to the growing body of CBD literature 
for both researchers and clinicians.

With increasing recreational and medicinal consump-
tion of CBD, it is pertinent to understand the drug activ-
ity. There are many modalities in which a ligand may 
interact with a receptor. As discussed by Miller and 
colleagues, receptors may be ion channel receptors, 
enzyme linked receptors, G-protein-coupled receptors, 
or nuclear receptors (Miller and Lappin 2023). Ligands 
can bind with receptors directly, either by agonizing or 
antagonizing (Miller and Lappin 2023). Ligands can bind 
at the active site, or allosterically away from the active 
site (Miller and Lappin 2023). There are multiple meth-
ods a ligand may decrease activity of a receptor, includ-
ing antagonism, inhibition, competitive inhibition, or 
inverse agonism (Miller and Lappin 2023). Certain sub-
stances may also impact receptor activity indirectly by 
suppressing or modulating activity, altering the kinetics 
of a reaction, or altering the expression of a receptor or 
another ligand (Miller and Lappin 2023). CBD affects 

multiple receptors in all of these ways. CBD was initially 
hypothesized to signal solely though the endocannabi-
noid system, though investigations have revealed func-
tional interactions with Transient Potential Vanilloid 1 
(TRPV1) (Costa et al. 2004) and the 5-hydroxytryptamine 
(5HT) receptors, or serotonin receptors (Rock et  al. 
2012). A previous review by de Almeida and colleagues 
has highlighted CBD binding on a subset of G-protein-
coupled receptors and ion channels (Almeida and Devi 
2020). The goal of this review is to compile the literature 
regarding various biological processes in which CBD in 
involved and to build on prior discussions of CBD path-
ways (Fig. 1).

Methods
Search Strategy
I conducted a comprehensive literature search to com-
pile evidence regarding cannabidiol (CBD) interactions 
with receptors, enzymes, and biological processes, organ-
ized by body systems. Searches were performed across 
PubMed, Web of Science, and Google Scholar for arti-
cles published through 2022. I included studies utilizing 
diverse methodologies, including cell culture, animal 
models, biochemical assays, and clinical research, to 
ensure a robust and holistic understanding of CBD recep-
tor interactions. Search terms included combinations of 
the following keywords: "CBD," "cannabidiol," "recep-
tors," "enzymes," "ion channels," "endocannabinoid sys-
tem," "cytochrome P450," "inflammation," "hormones," 
and "neurotransmission." I screened titles and abstracts 
for relevance to the theme of CBD interactions with 
receptors and enzymes. Articles were included if they 
reported direct, indirect, or implied interactions of CBD 
with specific receptors, enzymes, or biological processes. 
Full-text articles available in English were retrieved for 
those meeting initial inclusion criteria.

Data Extraction and Synthesis
Data from eligible studies were extracted, including 
receptor/enzyme name, methodology (e.g., cell culture, 
animal model, clinical trial), and key findings related 
to CBD interactions. To facilitate thematic analysis, 
extracted data were grouped by body system (e.g., nerv-
ous, endocrine, immune) and categorized by the specific 
receptor or enzyme involved. Findings were narratively 
synthesized to highlight patterns, gaps, and implications 
for health and disease.

Quality Assessment
Given the narrative nature of this review, no formal qual-
ity assessment tools were applied. However, emphasis 
was placed on studies providing mechanistic insights, 
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robust methodologies, or clinical relevance to ensure 
reliability in the synthesis.

Reporting
Relevant findings are presented in both narrative and 
tabular formats, organized by body system, to enhance 
clarity and accessibility.

CBD interacts with the endocannabinoid system
The endocannabinoid system encompasses a growing 
list of receptors that are bound by the endogenous can-
nabinoids, or endocannabinoids, 2-arachidonoyl glycerol 
(2-AG) (Sugiura et al. 1995) and arachidonoyl ethanola-
mide, or anandamide (AEA) (Felder et al. 1993). Though 
cannabis has been consumed for thousands of years 
(Bridgeman and Abazia 2017), it wasn’t until 1988 when 
Devane and colleagues characterized the first receptor 
than exogenous cannabinoids bound, called the can-
nabinoid receptor type 1  (CB1) (Devane et  al. 1988). In 
1992, the first endogenous cannabinoid that bound  CB1 
was isolated, called arachidonoylethanolamide, or anan-
damide (AEA) (Devane et al. 1992). In the last 30 years, 
the understanding of the endocannabinoid system has 
grown exponentially to include additional receptors, 
like transient receptors potential (TRP) channels (Costa 
et al. 2004), (Muller et al. 2019), and peroxisome prolif-
erator activated receptors (PPAR) (O’Sullivan et al. 2009), 

(O’Sullivan 2016), as well as additional minor endocan-
nabinoids like virodhamine (Porter et al. 2002) and 2-ara-
chidonoyl glycerol ether (Hanuš et  al. 2001). Further 
discussion on the function of the endocannabinoid sys-
tem in the central nervous system was presented by Zou 
and Kumar (Zou and Kumar 2018) and Lu and Mackie 
(Lu and Mackie 2016).

CB1 and  CB2 are activated by endogenous lipid-based 
retrograde neurotransmitters in the central and periph-
eral nervous system, including anandamide (AEA) 
(Felder et  al. 1993) and 2-arachidonoylglyerol (2-AG) 
(Sugiura et al. 1995).  CB1 is predominantly expressed in 
the central nervous system (Tissue expression of CNR1 
- Summary - The Human Protein Atlas n.d) while  CB2 is 
found in the peripheral nervous system and immune cells 
(Tissue expression of CNR2 - Summary - The Human 
Protein Atlas n.d), (Graham et  al. 2010).  CB1 and  CB2 
are G-protein-coupled receptors that confer intracellu-
lar signaling cascade activation when bound by ligands 
(Houston and Howlett 1998).  CB1 and  CB2 are acti-
vated by exogenous cannabinoid compounds such as 
THC (Shen and Thayer 1999). While CBD was initially 
theorized to activate  CB1 and  CB2 akin to the activa-
tion induced by THC, subsequent literature has debated 
this effect (McPartland et  al. 2015) (Table  1, Fig.  2). 
Competitive binding affects downstream signaling by 
reducing receptor activation in a reversible manner, as 

Fig. 1 Graphical Summary. This graphical abstract summarizes the CBD pathways discussed, including the endocannabinoid system, ion channels, 
cytochrome P450 enzymes, those involved in energy homeostasis, inflammatory pathways, apoptotic pathways, and sex hormone regulation. 
Additionally, this figure introduces the biological processes discussed herein, including psychiatric disorders, seizure activity, nausea and vomiting, 
pain sensation, thermal regulation, neuronal signaling, neurodegenerative diseases, reproductive aging, drug metabolism, inflammation, sex 
hormone regulation, and energy homeostasis. Created with BioRender.com
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higher concentrations of the endogenous ligand can 
outcompete the inhibitor and restore signaling. In con-
trast, non-competitive binding alters receptor function 
regardless of ligand concentration, often leading to par-
tial or complete inhibition of downstream signaling by 
inducing conformational changes or disrupting signal 
transduction pathways. CBD has multiple effects on  CB1 
receptors, including inversely agonizing  CB1  (Pertwee 
2008) and serving as a negative allosteric modulator of 
 CB1 (Laprairie et al. 2015), depending on the cellular con-
text (Table 1, Fig. 2). For example, in HEK 293A cells that 
exogenously express  CB1 receptors, and in a Huntington’s 
Disease model striatal cell line (STHdhQ7/Q7), applica-
tion of CBD induced noncompetitive negative allosteric 
modulation of  CB1 receptors with  CB1 agonists (Laprai-
rie et al. 2015) (Table 1, Fig. 2). CBD serves as an inverse 
agonist of  CB1 at low levels in  hCB2-CHO cells (Pert-
wee 2008) (Table 1, Fig. 2). Additionally, CBD alters the 
kinetics of internalization of  CB1 receptors into the cell 
through β-arrestin recruitment (Table 1, Fig. 2) (Laprairie 
et al. 2015). CBD has an indirect effect on CB1 through 

antagonism of fatty acid amide hydrolase (FAAH) (Pet-
rocellis et  al. 2011), (Bisogno et  al. 2001). FAAH breaks 
down the endocannabinoid anandamide (Kwilasz et  al. 
2014). By inhibiting FAAH, CBD can increase circulat-
ing anandamide levels (Hua et  al. 2023), (Leweke et  al. 
2012), leading to prolonged activation of  CB1 (Table  1, 
Fig. 2). CBD inversely activates  CB2 (Thomas et al. 2007) 
(Table 1, Fig. 2). In a [ (Tissue expression of CNR2 - Sum-
mary - The Human Protein Atlas n.d) S]GTPγS binding 
assay using CHO cell membranes transfected with  CB2 
receptors  (hCB2-CHO), 1 μM CBD showed a significantly 
lower  KB than  Ki, highlighting its function as an inverse 
agonist for  CB2 (Thomas et al. 2007). Additionally, CBD 
induces a heterodimerization of  CB2 with 5HT receptors 
(Pazos et al. 2013) (Table 1, Fig. 2). By regulating this het-
erodimer, CBD may be influential in neonatal hypoxic-
ischemic brain damage (Pazos et al. 2013). Current work 
investigating the involvement of CBD and the endocan-
nabinoid receptors is rapidly expanding, however there 
is still debate as to which of these effects are feasible at 
physiologic consumption levels of CBD.

Table 1 CBD interacts with the endocannabinoid system

Receptor/enzyme Full receptor/enzyme name Interaction Reference(s)

FAAH Fatty acid amide hydrolase Antagonism Bisogno et al. 2001; Petrocellis et al. 2011)

CB1 Cannabinoid receptor type 1 Inverse agonism, Negative 
allosteric modulator,
Blocks 

Navarro et al. 2020; Laprairie et al. 2015; 
Thomas et al. 2007)

CB2 Cannabinoid receptor type 2 Inverse agonism Thomas et al. 2007)

Heterodimerization of  CB2/5HT1A Interaction Pazos et al. 2013)

CB1R internalization Affects the kinetics Navarro et al. 2020)

Fig. 2 CBD interacts with the endocannabinoid system. CBD interacts with multiple regulators of the endocannabinoid system, 
including the endocannabinoid receptors  CB1 and  CB2. Additionally, CBD indirectly interacts with  CB1 via the enzyme FAAH and β-arrestin. CBD 
also regulates TRPV1 via interactions with  CB1 and inhibits  5HT1A via interactions with  CB2. Created with BioRender.com
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CBD interacts with ion channels
Ion channels control the flow of charged ions, such 
as  K+,  Na+,  Ca2+, and  Cl− across the cell membrane. 
These ions regulate the cell membrane potential, which 
is critical in excitable tissues such as the brain, heart, 
and pancreas (Neher 1992). Cells within these tis-
sues communicate through action potentials, chemi-
cal and electrical synapses, and gap junctions, all of 
which are mediated by the ion channels that control 
the membrane potential (Neher 1992). Altering the 
activity of these ion channels disrupts intercellular 

communication and can have downstream impacts on 
tissue function (Neher 1992).

CBD impacts processes involved in psychiatric disorders
CBD activates and antagonizes processes that are impli-
cated in the development or management of psychiatric 
disorders, specifically serotonin receptors (Rock et  al. 
2012; Xiong et al. 2011; Yang et al. 2010) and G-protein-
coupled receptors 3, 6, 12 and 55 (Laun et al. 2019; Laun 
and Song 2017; Lauckner et  al. 2008) (Table  2, Fig.  3). 
GPRs 3, 6, and 12 are also called cannabinoid-related 

Table 2 CBD interacts with ion channels, enzymes, and G protein-coupled receptors

Ion channel/
receptor/
enzyme

Full receptor/ion channel/ enzyme name Interaction Reference(s)

Serotonin related receptors and enzymes
  5HT1A 5-hydroxytryptamine receptor 1A Activates Rock et al. 2012)

 IDO1/2 
to increase 
tryptophan 
catabolism

Indoleamine-pyrrole 2,3-dioxygenase Activates Jenny et al. 2009; Jenny et al. 2010)

 5-HT3A 5-hydroxytryptamine receptor 3A Antagonizes Xiong et al. 2011; Yang et al. 2010)

TRP receptors
 TRPV1 Transient Receptor Potential Cation Channel Subfamily V 

Member 1
Activates, inhibits Petrocellis et al. 2011; Anand et al. 2020)

 TRPV2 Transient Receptor Potential Cation Channel Subfamily V 
member 2

Activates Qin et al. 2008)

 TRPV3 Transient Receptor Potential Cation Channel Subfamily V 
Member 3

Activates Petrocellis et al. 2012)

 TRPV4 Transient Receptor Potential Cation Channel Subfamily V 
Member 4

Activates Petrocellis et al. 2012)

 TRPA1 Transient Receptor Potential Cation Channel Subfamily A Mem-
ber 1

Activates Petrocellis et al. 2008)

 TRPM8 Transient Receptor Potential Cation Channel Subfamily M 
Member 8

Antagonizes Petrocellis et al. 2008)

Other ion channels
  KV7.2/3 Potassium voltage-gated channel subfamily KQT member 2 

and 3
Activates Zhang et al. 2022)

  KV4.3 Potassium voltage-gated channel subfamily D member 3 Inhibits Marois et al. 2020)

  KV11.1 Potassium voltage-gated channel 11.1 Inhibits Marois et al. 2020)

  NaV1.1–1.7 Voltage-gated sodium channel Inhibits Marois et al. 2020), (Ghovanloo et al. 2018)

 Cav1 L-type calcium channel Inhibits Marois et al. 2020), (Isaev et al. 2022)

 Cav3 T type calcium channel Inhibits Ross et al. 2008)

 GlyRs Ligand-gated glycine receptors Allosterically modulates Ahrens et al. 2009)

G protein-coupled receptors
 GPR 3 G-protein-coupled receptor 3 Inversely activates Laun et al. 2019), (Laun and Song 2017)

 GPR 6 G-protein-coupled receptor 6 Inversely activates Laun et al. 2019), (Laun and Song 2017)

 GPR 12 G-protein-coupled receptor 12 Inversely activates

 GPR 55 G-protein-coupled receptor 55 Antagonizes Akimova et al. 2009)

 D2 D2 dopamine receptors Partially activates Seeman 2016)

 μ-opioid μ-opioid receptors Allosterically modulates Vaysse et al. 1987), (Kathmann et al. 2006)

 ∂-opioid ∂-opioid receptors Allosterically modulates Kathmann et al. 2006)
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orphan receptors, because of their reactivity to endog-
enous and exogenous cannabinoids (Laun et  al. 2019). 
CBD activates  5HT1A (Rock et  al. 2012), a G-protein-
coupled receptor that is heavily expressed in the brain, 
gastrointestinal tract, endocrine tissues, kidney, and 
muscles, among other tissues (Tissue expression of 
HTR1A - Summary - The Human Protein Atlas n.d) 
(Table 2, Fig. 3). In the central nervous system, dysregula-
tion of  5HT1A signaling has harmful effects on cognition, 
mood and behavior disorders, depressive disorders, and 
panic disorders (Savitz et al. 2009; Akimova et al. 2009). 
CBD also indirectly decreases  5HT1A expression (Jenny 
et al. 2009; Jenny et al. 2010) (Table 2, Fig. 3). Under CBD 

exposure, tryptophan, the precursor to  5HT1A, pref-
erentially follows the IDO1/2 pathway to tryptophan 
catabolism instead of conversion to  5HT1A (Jenny et  al. 
2009; Jenny et al. 2010) (Table 2, Fig. 3). CBD antagonizes 
another serotonin receptor,  5HT3A (Yang et  al. 2010), 
which is expressed in the brain, digestive tract, pancreas, 
muscle, bone marrow, and lymphoid tissue (HTR3A pro-
tein expression summary - The Human Protein Atlas n.d) 
(Table 3, Fig. 3). Unlike the other 5HT receptors that cou-
ple to G-protein-coupled receptors,  5HT3A is a ligand-
gated ion channel (Rodriguez Araujo et al. 2020). In the 
central nervous system,  5HT3A has been localized to pre- 
and post-synaptic nerve terminals in both excitatory and 

Fig. 3 CBD interacts with ion channels and G-protein coupled receptors. CBD interacts with multiple ion channels, including the TRP channels 
TRPM8, TRPV1, TRPV2, TRPV3, TRPV4, and TRPA1, serotonin receptor  5HT3A, sodium channels  NaV1.1–1.7, L-type calcium channels, voltage-gated 
potassium channels  KV7.2,  KV7.3,  KV4.3, and  KV11.1, and glycine receptors. CBD interacts with the G protein-coupled receptors GPR3, GPR6, GPR12, 
and GPR55, the μ-opioid and ∂-opioid receptors, and interacts with receptors who couple with G protein coupled receptors for downstream 
signaling cascades, including  5HT1A serotonin receptors and D2 dopamine receptors. Created with BioRender.com

Table 3 CBD interacts with cytochrome p450 enzymes

Enzyme Full enzyme name Interaction Reference(s)

CYP1A1 Cytochrome P450 1A1 Antagonism Qian et al. 2019)

CYP1A2 Cytochrome P450 1A2 Antagonism Qian et al. 2019)

CYP1B1 Cytochrome P450 1B1 Antagonism Qian et al. 2019)

CYP2B6 Cytochrome P450 2B6 Antagonism Doohan et al. 2021), (Qian et al. 2019)

CYP2C9 Cytochrome P450 2C9 Antagonism Doohan et al. 2021)

CYP2C19 Cytochrome P450 2C19 Antagonism Doohan et al. 2021), (Qian et al. 
2019), (Jiang et al. 2013)

CYP2D6 Cytochrome P450 2D6 Antagonism Yamaori et al. 2011), (Qian et al. 2019)

CYP2J2 Cytochrome P450 2J2 Antagonism Qian et al. 2019)

CYP3A4 Cytochrome P450 3A4 Antagonism Yamaori et al. 2011)

CYP3A5 Cytochrome P450 3A5 Antagonism Yamaori et al. 2011)

CYP3A7 Cytochrome P450 3A7 Antagonism Yamaori et al. 2011)
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inhibitory neurons that release dopamine, cholecysto-
kinin, and GABA (Engel et al. 2013).  5HT3A dysregulation 
has similar effects to  5HT1A in affecting mood disorders, 
as dysregulation of  5HT3A is implicated in depression, 
bipolar disorder, and post-traumatic stress disorder (Jang 
et  al. 2015; Bétry et  al. 2011). CBD inversely activates 
GPR3 and GPR6 (Laun and Song 2017) (Table 2, Fig. 3). 
GPR3 is expressed in the brain, endocrine tissues, mus-
cle, respiratory system, and digestive tract (Tissue expres-
sion of GPR3 - Summary - The Human Protein Atlas n.d), 
and GPR6 is expressed in the brain and endocrine tissues 
(Tissue expression of GPR6 - Summary - The Human 
Protein Atlas n.d). Activation of GPR3 and GPR6 impact 
behavior, where activation of GPR3 mediates behavio-
ral changes in stress response (Valverde et al. 2009), and 
GPR6 alters instrumental learning by regulating cyclic 
adenosine monophosphate (cAMP) production in striatal 
spiny neurons (Oeckl et  al. 2014). GPR3 activation also 
modulates cocaine reinforcement (Tourino et  al. 2012), 
suggesting it may play a role in risk for addiction disor-
ders. Together, these interactions implicate a potential 
effect of CBD consumption on the development, progres-
sion, or management of psychiatric disorders.

CBD impacts processes that modulate seizure activity
Epidiolex is the single United States Food and Drug 
Administration (FDA) approved CBD medication, used 
to treat seizures associated with Lennox-Gastaut Syn-
drome, Dravet Syndrome, or Tuberous Sclerosis Com-
plex patients over the age of  18. CBD antagonizes GPR55 
(Lauckner et al. 2008), a G protein-coupled receptor that 
is dysfunctional in epileptic patients (Rosenberg et  al. 
2023) (Table 2, Fig. 3). GPR55 is expressed in the brain, 
gastrointestinal tract, male reproductive tract, bone mar-
row, and lymphoid tissues (GPR55 protein expression 
summary - The Human Protein Atlas n.d). By indirectly 
blocking the malfunctioning GPR55 in epileptic patients, 
CBD can significantly reduce seizure episodes (Rosen-
berg et  al. 2023). Additional ion channels involved in 
seizure activity modulation are  KV7.2 and  KV7.3 (Miceli 
et  al. 2015), which CBD activates (Zhang et  al. 2022) 
(Table 2, Fig. 3). CBD inhibits  KV4.3 (Marois et al. 2020), 
a potassium channel whose dysregulation via genetic 
mutation causes epilepsy (Smets et al. 2015) and  KV11.1 
(Marois et al. 2020), a potassium channel whose dysregu-
lation induces seizures (Keller et al. 2009). CBD inhibits 
voltage-gated sodium channels,  NaV1.1–1.7 (Ghovan-
loo et  al. 2018) (Table  2, Fig.  3). Genetic disruptions in 
 NaV channels induce seizure activity due to alterations 
in action potential propagation, as discussed by Men-
ezes and colleagues (Menezes et al. 2020). In genetic sei-
zure disorders, pharmaceutical  NaV channel agonists or 
antagonists like carbamazepine and lamotrigine can be 

therapeutic in mitigating seizure activity by restabilizing 
action potential propagation (Catterall 2014). Because 
CBD is an effective seizure-reducing medication, and it 
is federally approved for treatment of childhood seizures 
(Abu-Sawwa et al. 2020), the mechanistic understanding 
of how CBD can mitigate seizure activity is an active area 
of investigation.

CBD impacts receptors that regulate temperature 
sensitivity
CBD may impact temperature sensation by agonizing 
or antagonizing transient potential receptors, or TRPs 
(Table 2, Fig. 3) (Petrocellis et al. 2011; Anand et al. 2020; 
Petrocellis et al. 2012). CBD activates five TRP channels, 
including TRPV1, TRPV2, TRPV3, TRPV4, and TRPA1, 
and antagonizes TRPM8 (Petrocellis et  al. 2011; Anand 
et  al. 2020; Qin et  al. 2008; Petrocellis et  al. 2012; Pet-
rocellis et al. 2008) (Table 2, Fig. 3). TRPV1 and TRPV2 
sense high thermal stimuli, including stimuli above 42 °C 
and above 52  °C, respectively (Samanta et  al. 2018). 
TRPM8 and TRPA1 sense low thermal stimuli, includ-
ing temperatures 25–34 °C and below 17 °C, respectively 
(Samanta et  al. 2018). TRPV1 is expressed in the brain, 
liver, gallbladder, pancreas, muscle, and reproductive 
tissues, TRPV2 is expressed in the brain, endocrine tis-
sues, respiratory system, gastrointestinal tract, liver, gall-
bladder, and pancreas, among other tissues, TRPM8 is 
expressed in the liver, gallbladder, and male reproductive 
tissues, and TRPA1 is expressed in the gastrointestinal 
tract, liver, gallbladder, kidney, bladder (TRPA1 protein 
expression summary - The Human Protein Atlas n.d; 
Tissue expression of TRPV1 - Summary - The Human 
Protein Atlas n.d; TRPV2 protein expression summary 
- The Human Protein Atlas n.d; TRPM8 protein expres-
sion summary - The Human Protein Atlas n.d). TRPV3 is 
expressed predominantly in the gastrointestinal tract and 
skin, with lower expression levels in the muscle, repro-
ductive tissues, brain, and endocrine tissues (TRPV3 
protein expression summary - The Human Protein Atlas 
n.d). TRPV4 is expressed in the brain, endocrine tissues, 
gastrointestinal tract, pancreas, reproductive tissues, and 
muscle tissues, among others (TRPV4 protein expression 
summary - The Human Protein Atlas n.d). Dysregula-
tion of TRP channels can alter thermal pain sensation, 
as discussed by Cortright and colleagues (Cortright et al. 
2007). Exposure to TRP agonists can increase thermal 
pain sensitivity (Cortright et al. 2007). In fact, intrauter-
ine CBD exposure increases sensitivity to thermal pain 
in adult male offspring in a TRPV1 dependent manner 
(Swenson et al. 2023). The agonism of these six receptors 
by CBD signals that CBD consumption could potentially 
mediate thermal sensitivity.
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CBD content may modulate cannabis-induced hyperemesis
Following prolonged consumption of cannabis, some 
patients experience severe refractory nausea and vom-
iting called cannabis hyperemesis (Perisetti et  al. 2020). 
The mechanism of cannabis hyperemesis is yet to be elu-
cidated, though one working mechanistic theory is that 
prolonged THC exposure induces TRPV1 hypersensiti-
zation in the enteric and vagal neurons (Sharkey 2022). 
Interestingly, many patients with cannabis hyperemesis 
report relief following a hot shower (Perisetti et al. 2020), 
suggesting potential involvement of TRP receptors. 
Because TRPV1 is responsive to high heat (Samanta et al. 
2018), and because it is expressed in the area postrema 
of the medulla, along gastric enteric and vagal nerves, 
and on cutaneous receptors in the dermis and epidermis 
(Tissue expression of TRPV1 - Summary - The Human 
Protein Atlas n.d), researchers postulate that repetitive 
TRPV1 activation may cause vomiting from overexcita-
tion, or relief from the vomiting under acute activation 
of the hot shower. As CBD activates TRPV1, its role in 
inducing or mediating cannabis hyperemesis is theoreti-
cal and a key point for future investigations.

CBD impacts processes that regulate nausea and vomiting
CBD has gained traction recently as an anti-emetic, or 
nausea-reducing, medication. One potential mecha-
nism by which CBD may inhibit nausea and vomiting 
is through antagonism of  5HT3A receptors (Yang et  al. 
2010; Theriot et  al., n.d) (Table  2, Fig.  3). In the enteric 
nervous system that lines the gastrointestinal tract, 
 5HT3A receptor antagonists inhibit the gastrointestinal 
activity in nausea and vomiting (Browning 2015). Addi-
tionally, it is theorized that  5HT3A antagonism in the area 
postrema in the brainstem, known as the vomiting center, 
decreases the nausea and vomiting response in small 
mammals (Higgins et  al. 1989). In rodent studies, CBD 
suppresses 0.1% saccharin solution induced vomiting in 
Asian house shrews (S. Murinus) and conditioned gaping 
(a measure of rodent nausea) in rats due to indirect ago-
nism of  5HT1A somatodendritic autoreceptors in the dor-
sal raphe nucleus (Rock et al. 2012). CBD is increasingly 
consumed as an anti-emetic medication, particularly by 
chemotherapy patients, pregnant patients, and migraine 
patients (O’Brien 2022; Baron 2018). As CBD inhib-
its CYP 450 enzymes that metabolize pharmaceuticals 
(Smith and Gruber 2023), (Doohan et  al. 2021), (Qian 
et al. 2019) understanding the impacts of CBD usage in 
chemotherapy is critical. Additionally, understanding the 
potential impact of CBD on fetal development, and the 
impact of co-consumption of CBD with migraine medi-
cations, would help inform these patients to the safety, 
risks, or drug-drug interactions that are possible with 
CBD. As CBD does not cause many of the side effects 

that accompany other nausea medications, like constipa-
tion and headache (Tincello and Johnstone 1996), it is a 
promising area of clinical investigation.

CBD impacts processes that regulate pain sensation
CBD impacts multiple processes that regulate pain sen-
sation, including ion channels that sense painful stimuli, 
opioid receptors, and enzymes which regulate the break-
down of pain medications. CBD activates five TRP chan-
nels, including TRPV1, TRPV2, TRPV3, TRPV4, and 
TRPA1, and antagonizes TRPM8 (Table 2, Fig. 3) (Petro-
cellis et al. 2011; Anand et al. 2020; Qin et al. 2008; Pet-
rocellis et  al. 2012; Petrocellis et  al. 2008). TRPV1 and 
TRPA1 antagonists are under current clinical trials as 
medications to reduce inflammatory, neuropathic, and 
visceral pain conditions (Gunthorpe and Chizh 2009; 
Giorgi et al. 2019). In addition to the thermal pain sen-
sation mediated by TRP channels, CBD also impacts 
receptors that mediate nociceptive pain. CBD is an allos-
teric modulator of both μ-opioid receptors and ∂-opioid 
receptors at high concentrations, altering the efficacy of 
which opioid agonists bind or dissociate from the recep-
tors (Vaysse et al. 1987; Kathmann et al. 2006) (Table 2, 
Fig.  3). Though CBD does allosterically modulate these 
opioid receptors, the authors who published on this 
interaction discuss how it is unlikely that CBD would 
induce these interactions at physiologically relevant lev-
els (Kathmann et  al. 2006). Kathmann discusses how 
the half maximal effective concentration  (EC50) needed 
for CBD to interact with opioid receptors is likely 100 
times higher than what can be consumed in a standard 
oral dose of CBD (Kathmann et al. 2006). This discussion 
was later supported by human pharmacokinetic studies 
which show plasma CBD metabolite levels following vari-
ous levels of CBD ingestion, as discussed by Ujváry and 
colleagues (Ujváry and Hanuš 2016). Additionally, sero-
tonin receptors such as  5HT1A regulate neuropathic pain 
conditions such as migraine and fibromyalgia (Leone 
et al. 1998; Tour et al. 2022). By activating  5HT1A, CBD 
inhibits paclitaxel-induced neuropathic pain (Ward et al. 
2014). In the context of pain management, CBD may 
also impact the effectiveness of standard medications, 
including codeine, hydrocodone, oxycodone, fentanyl, 
meperidine, methadone, buprenorphine, and tramadol, 
all of which are metabolized by the cytochrome p450 
(CYP) enzyme group (Table 3, Fig. 4) (Doohan et al. 2021; 
Interactions Between Cannabinoids and Cytochrome 
P450-Metabolized Drugs - Full Text View - ClinicalTri-
als.gov n.d). By antagonizing or competitively inhibiting 
the CYP enzymes (Doohan et al. 2021; Qian et al. 2019; 
Yamaori et  al. 2011 Yamaori et  al. 2011), it is possible 
that CBD co-consumption with narcotics will increase 
the narcotic half-life in the system, increasing pain 
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management, but also increasing risk of overdose. In 
clinical studies investigating the beneficial role of CBD 
in pain management, co-consumption of CBD with opi-
oids allowed patients to decrease opioid dose while main-
taining effective levels of pain relief, though it is only 
speculated that this could be through a CYP enzyme 
inhibition mechanism (Capano et al. 2020). CBD antag-
onizes CYP2D6 (Qian et  al. 2019; Yamaori et  al. 2011), 
which metabolizes opioids (Yamaori et al. 2011) (Table 3, 
Fig.  4). By inhibiting this enzyme, CBD may hinder the 
breakdown of opioids and alter the half-life of the opioids 
in the bloodstream. CBD may also alter the metabolism 
of painkillers ketamine and methadone via antagonizing 
CYP2B6 (Doohan et al. 2021; Qian et al. 2019) (Table 3, 
Fig. 4). CBD inversely activates GPR3 (Laun et al. 2019), 
and GPR3 knockout mice show increased pain sensitiv-
ity and reduced response to morphine, highlighting the 
role of GPR3 in pain sensation (Ruiz-Medina et al. 2011) 
(Table 2, Fig. 3). CBD is an allosteric modulator of GlyRs 
(Ahrens et al. 2009), which mediate pain processing and 
pain hypersensitivity (Moraga-Cid et  al. 2020) (Table  2, 
Fig.  3). CBD also activates  KV7.2/3 (Zhang et  al. 2022), 
whose activation in sensory nociceptive neurons medi-
ates how Aδ peripheral nerves respond to noxious heat 
as discussed by Brown and Colleagues (Brown and Pass-
more 2009) (Table 2, Fig. 3). Together, these data impli-
cate how consumption of CBD can alter pain sensation, 
which can have long-lasting impacts on pain tolerance, 
pain sensitivity, and consumption of pain-reducing 
medications.

CBD impacts neuronal function
CBD consumption may mediate neuronal function by 
agonizing or antagonizing multiple ion channels that 
maintain neuronal membrane potential, including 
potassium channels, sodium channels, and serotonin 

receptors, as well as G-protein-coupled receptors. CBD 
interacts with multiple ion channels, all of which have 
the potential to mediate neuronal signaling by altering 
neuronal membrane potential. CBD activates voltage-
gated potassium channels  KV7.2 and  KV7.3 (Table  2, 
Fig.  3) (Zhang et  al. 2022). As discussed by Brown and 
colleagues,  KV7.2 and  KV7.3 are expressed in the nerv-
ous system and regulate neuronal excitability (Brown 
and Passmore 2009). In sympathetic neurons,  KV7.2/3 
activity mediates repetitive discharges and conversion 
from phasic to tonic firing, and in hippocampal pyrami-
dal neurons,  KV7.2/3 activity mediates repetitive dis-
charges of the neuron (Brown and Passmore 2009). By 
agonizing these ion channels and altering these repetitive 
discharges, CBD could be altering neuronal communica-
tion. CBD also inhibits  NaV1.1–1.7 channels and L-type 
and T-type calcium channels (Ghovanloo et  al. 2018; 
Isaev et al. 2022; Ross et al. 2008; Ghovanloo and Ruben 
2022; Ali et al. 2015) all of which regulate action poten-
tial propagation and subsequent neuron communication 
(Grider et  al. 2023) (Table  2, Fig.  3). In fact, fetal CBD 
exposure reduces the excitability of the prefrontal cortex 
and cognition in females (Swenson et  al. 2023). By dis-
rupting sodium and potassium channels which regulate 
neuronal communication, CBD may have lasting impacts 
on neuronal network structure and subsequent function.

CBD inversely activates GPRs 3, 6, and 12 (Table  2, 
Fig. 3) (Laun et al. 2019). The exact mechanism of these 
receptors is yet to be classified, but they have proposed 
mechanisms based on structural similarity to other 
receptors (Laun and Song 2017). GPRs 3, 6, and 12 are 
structurally similar to cannabinoid receptors, and the 
involvement of CBD with these receptors has been under 
recent investigation (Laun and Song 2017). GPR12 is 
expressed in the brain, eye, and gastrointestinal tract 
(GPR12 protein expression summary - The Human 

Fig. 4 CBD interacts with cytochrome p450 enzymes. CBD competitively inhibits CYP enzymes, including CYPs 2C9, 1A1, 1A2, 1B1, 2D6, 2B6, 2J2, 
2C19, and antagonizes CYPs 3A5, 3A7, and 3A4. Created with BioRender.com
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Protein Atlas n.d). All three receptors impact neurologi-
cal functioning, where activation of GPR3, GPR6, and 
GPR12 mediates neurite outgrowth (Tanaka et al. 2007) 
and activation of GPR3, GPR6 and GPR12 regulates neu-
ronal survival (Tanaka et al. 2014; Full article: Towards a 
better understanding of the cannabinoid-related orphan 
receptors GPR3, GPR6, and GPR12 n.d). CBD is an allos-
teric modulator of GlyRs (Ahrens et al. 2009), which are 
ligand-gated ion channels that regulate motor coordina-
tion, respiratory control, and muscle tone by control-
ling action potential activity (Moraga-Cid et  al. 2020) 
(Table 2, Fig. 3).

CBD activates  5HT1A,  5HT3A, and D2 dopamine recep-
tors (Rock et  al. 2012; Yang et  al. 2010; Seeman 2016), 
which mediate neurotransmitter release and neuronal 
communication (Altieri et  al. 2012; Fields et  al. 1990; 
Bhatt et  al. 2021; Wu and Hablitz 2005).  5HT1A and 
 5HT3A play crucial roles in mediating neuronal signal-
ing (Altieri et  al. 2012; Bhatt et  al. 2021). The agonism 
of  5HT1A receptors hyperpolarizes the neuron, leading 
to a decrease in action potential propagation (Sprouse 
and Aghajanian 1986). As action potential propagation 
increases neurite outgrowth (Fields et  al. 1990), CBD 
may hinder neurite outgrowth and subsequent neuronal 
connections.  5HT3A receptor antagonism is under cur-
rent investigation for its therapeutic effects in depression 
models (Bhatt et al. 2021). CBD antagonizes  5HT3A (Yang 
et  al. 2010), meaning CBD may play a role in depres-
sive disorders. CBD is a partial agonist of D2 dopamine 
receptors (Table  2, Fig.  3) (Seeman 2016). As agonism 
of D2 dopamine receptors increases neurite outgrowth 
(Todd 1992), CBD exposure may subsequently increase 
outgrowth.

These receptors, including the  5HT1A,  5HT3A, TRP 
channels, D2 dopamine receptors,  KV7.2,  KV7.3, 
 NaV1.1–1.7, and L-type and T-type calcium channels, 
may have synergistic or oppositional effects upon CBD 
binding. The receptors and channels mediate many 
components of action potential propagation, including 
the influx of sodium ions during depolarization and the 
efflux of potassium during repolarization and hyperpo-
larization. Some receptors and channels have the abil-
ity to mediate activity of other receptors or channels 
often through the alteration of the membrane potential. 
Sodium channels, including  NaV1.1–1.7, are responsi-
ble for the inward flux of sodium ions that depolarize a 
neuron (Eijkelkamp et al. 2012). Inhibition of these chan-
nels by CBD would decrease neuronal excitability by pre-
venting membrane voltage from raising above baseline. 
 5HT1A agonism opens potassium channels (allowing 
potassium influx and repolarization/hyperpolarization) 
and closing calcium channels (hindering depolarization) 
(Ehrengruber et  al. 1997; Penington et  al. 1991; Albert 

and Vahid-Ansari 2019). By agonizing  5HT1A receptors 
(Rock et al. 2012), CBD may additionally decrease action 
potential propagation by hyperpolarizing the cell (Albert 
and Vahid-Ansari 2019). In some neuronal subtypes, cal-
cium channels serve as upstream moderators of action 
potential propagation by dictating membrane potential 
(Iosub et al. 2015). For example, in the calcium-induced 
calcium release in inner hair cells, L type calcium chan-
nel activity induces the opening of potassium channels 
during repolarization (Iosub et  al. 2015). Similarly, ago-
nism of T type calcium channels induces depolarization 
when the neurons are in a hyperpolarized state (Cain and 
Snutch 2010). T type calcium channels are also involved 
in the repolarization and hyperpolarization of mem-
brane potential, as they activate voltage-gated potassium 
channels that allow an outward flux of positively charged 
potassium ions (Cain and Snutch 2010). By inhibiting 
these calcium channels, CBD may further decrease depo-
larization. Voltage-gated potassium channels, including 
 KV7.2 and 7.3, respond to changes in membrane potential 
to allow the outward flux of potassium ions during the 
latter stage of the action potential (Estacion et al. 2023). 
This outward flux of potassium pushes the membrane 
voltage back to baseline, and later to hyperpolarization 
(Estacion et al. 2023). By agonizing these channels, CBD 
may additionally decrease action potential propagation. 
In opposition, many of the TRP receptors induce depo-
larization upon activation (Gees et  al. 2010), including 
when activated specifically by CBD (Kowalski et al. 2020). 
Similarly, D2 dopamine receptor agonism induces depo-
larization (Wu and Hablitz 2005).

CBD interacts with receptors that affect neurodegenerative 
disease progression and symptom management
CBD is under investigation for its impact on treating 
symptoms of neurodegenerative diseases, such as Par-
kinson’s disease and Alzheimer’s disease (Bhunia et  al. 
2022). Neurodegeneration is a complex process regulated 
by many receptors, some of which are bound by CBD. As 
discussed by Bhunia and colleagues,  CB1R,  CB2R, PPARγ, 
 5HT1A,  A2A-R, and TRPV1 all have neuroprotective 
effects (Table 2, Fig. 3) (Bhunia et al. 2022). In addition to 
these receptors, CBD also inversely activates GPR3 and 
GPR12 (Table 2, Fig. 3) (Laun et al. 2019; Laun and Song 
2017). GPR3 and GPR6 have shown an impact on Alz-
heimer’s disease progression by regulating amyloid beta 
production (Huang et  al. 2022), and activation of GPR6 
modulates Parkinson’s disease progression by regulating 
striatal dopamine production (Brice et al. 2021). CBD is 
currently under investigation in clinical trials for symp-
tom management in Parkinson’s Disease and Alzheimer’s 
disease, and in disease progression using animal model 
studies though the mechanism behind potential benefits 
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has not yet been defined (Chagas et al. 2014; Chesworth 
et  al. 2022; Hao and Feng 2021; McManus et  al. 2021; 
Almeida et al. 2023; Faria et al. 2020; Zhang et al. 2022).

CBD antagonizes CYP enzymes which metabolize 
pharmaceuticals
CBD may impact pharmacologic drug metabolism by 
antagonizing CYP enzymes (Doohan et  al. 2021; Qian 
et  al. 2019; Yamaori et  al. 2011 Yamaori et  al. 2011) 
(Table  3, Fig.  4), the largest regulator of drug metabo-
lism (Zhao et al. 2021). CYP enzymes are predominantly 
expressed in the liver, but are also present in the kidney, 
placenta, adrenal gland, gastrointestinal tract, and skin 
(Zhao et  al. 2021). Additionally, CYP enzymes are criti-
cal to produce cholesterol, steroids, prostacyclins, and 
thromboxane  A2 (Rendic and Guengerich 2018). CBD has 
two primary effects on CYP enzymes that suppress CYP 
enzyme activity: antagonism and competitive inhibition 
(Smith and Gruber 2023; Doohan et al. 2021; Qian et al. 
2019; Yamaori et  al. 2011 Yamaori et  al. 2011) (Table 3, 
Fig. 4). CBD competitively inhibits CYPs 3A4, 3A7, and 
3A5 (Doohan et  al. 2021; Yamaori et  al. 2011) (Table  3, 
Fig.  4). CYP3A4 breaks down small foreign organic 
molecules (xenobiotics) that are common prescrip-
tion medications, such as clarithromycin, erythromycin, 
diltiazem, itraconazole, ketoconazole, ritonavir, and vera-
pamil (Sweeney and Bromilow 2006). By competitively 
inhibiting CYP3A4 (Smith and Gruber 2023), CBD can 
interfere with drug metabolism, increasing the half-life 
of the drug. During fetal liver development, CYP3A7 is 
the predominant CYP, while CYP3A4 takes over during 
postnatal development (Li and Lampe 2019). CYP3A7 
hydroxylates testosterone and dehydroepiandrosterone 
3-sulphate, which is involved in the formation of estra-
diol during pregnancy (CYP3A7 Gene - Cytochrome 
P450 Family 3 Subfamily A Member 7 n.d). By inhibiting 
CYP3A7 (Yamaori et al. 2011), CBD may have impacts on 
estradiol creation or maintenance. Unlike the majority of 
CYP enzymes that function in the liver, CYP3A5 metabo-
lizes endogenous steroids and xenobiotics in extrahepatic 
tissues, including the lung, kidney, prostrate, breast and 
leukocytes (Lamba et  al. 2002). This activity highlights 
potential risks of co-consuming CBD with common 
pharmaceutical or recreational medications as CBD may 
alter drug metabolism and subsequent activity.

CBD antagonizes CYP2C9, CYP1A1, CYP1A2, 
CYP1B1, CYP2D6, CYP2B6, and CYP2J2 (Smith and 
Gruber 2023; Doohan et  al. 2021; Qian et  al. 2019; 
Yamaori et al. 2011 Yamaori et al. 2011) (Table 3, Fig. 4). 
CYP2C9 is the predominant metabolizer of the blood 
clot prevention medication Warfarin (Dean and Warfa-
rin Therapy and VKORC1 and CYP Genotype. In: Pratt 
VM, Scott SA, Pirmohamed M, Esquivel B, Kattman BL, 

Malheiro AJ, eds. Medical Genetics Summaries. National 
Center for Biotechnology Information (US) 2012). By 
antagonizing CYP2C9, CBD impairs the degradation of 
Warfarin, impacting blood clotting (Grayson et al. 2017; 
Cortopassi 2020; Hsu and Painter 2020). CYP1A1 is 
critical in cancer regulation because it metabolizes car-
cinogens into epoxide intermediates which are less det-
rimental (Androutsopoulos et  al. 2009). CBD increases 
CYP1A1 expression in a Hep2G cell line and antago-
nizes the enzyme activity (Qian et al. 2019; Yamaori et al. 
2015). CYP1A2 metabolizes endogenous compounds 
including retinols, melatonin, steroids, uroporphyrino-
gen, and arachidonic acid, as well as recreational and 
pharmaceutical drugs including phenacetin, caffeine, clo-
zapam, tacrine, propranolol, and mexiletine (Zhou et al. 
2009). CYP1A2 also metabolizes precarcinogens, includ-
ing aflatoxins, mycotoxins, and nitrosamines (Zhou et al. 
2009). By antagonizing CYP1A2 (Qian et al. 2019), CBD 
exposure could alter the breakdown of these substances. 
CYP1B1 metabolizes exogenous compounds akin to 
other CYP enzymes, while also metabolizing endog-
enous compounds such as estrogen, arachidonic acid, 
melatonin, and retinoids (Li et al. 2017). CYP2D6 metab-
olizes pharmaceutical medications including antidepres-
sants, neuroleptics, some antiarrhythmics, lipophilic 
β-adrenoceptor blockers and opioids (Bertilsson et  al. 
2002). CBD inhibits CYP2C19 (Doohan et al. 2021; Qian 
et  al. 2019), an enzyme that metabolizes multiple phar-
maceutical drugs including citalopram, clomipramine, 
clopidrogrel, diazepam, omeprazole (Jiang et  al. 2013). 
CYP2B6 is responsible for metabolizing pharmaceuti-
cals including artemisinin, bupropion, cyclophospha-
mide, efavirenz, ketamine, and methadone (Zanger and 
Klein 2013). CYP2J2 metabolizes many pharmaceuti-
cals, including antihistamines (terfenadine, ebastine, and 
astemizole), anticancer agents (doxorubicin and tamox-
ifen), and immunosuppressants (cyclosporine) (Solanki 
et  al. 2018). Combined, these interactions demonstrate 
CBD is not inert, and CBD consumption can alter metab-
olism of many substances. Because of these interactions, 
healthcare providers and pharmacists should inquire 
about patient CBD consumption.

CBD impacts the breakdown of exogenous cannabinoids
CBD hinders the breakdown of tetrahydrocannabinol 
(Zamarripa et  al. 2023), or THC, the primary psycho-
active component of marijuana by inhibiting CYP2C9, 
CYP2D6, and CYP3A4 (Doohan et  al. 2021; Qian et  al. 
2019; Yamaori et al. 2011; Ng et al. 2023). CBD is the sec-
ond most common cannabinoid included in marijuana 
products, followed by minor cannabinoids like cannabi-
nol, cannabichromene, cannabigerol, cannabinolic acid, 
and cannabidivarin, among others (Walsh et  al. 2021). 
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CBD antagonizes CYP2C9 and CYP2C19 (Doohan et al. 
2021; Qian et  al. 2019; Jiang et  al. 2013), which are the 
predominant metabolizers of exogenous cannabinoids 
(Bland et al. 2005) (Table 3, Fig. 4). Through this mecha-
nism, CBD exposure could slow the metabolism of other 
exogenous cannabinoids, increasing their half-life and 
therefore increasing the length of symptomatology from 
the psychoactive components.

CBD may alter the regulation of sex hormones
By interacting with multiple regulators of sex hormone 
production or metabolism, CBD may alter sex hor-
mone production or levels. CBD antagonizes aromatase 
(Almada et  al. 2020), an enzyme that converts testos-
terone to estrogen (Brodie et  al. 1999) (Table  4, Fig.  5). 
Inhibition of aromatase during fetal development can be 
harmful, as it decreases the production of estrogens that 
are required for pregnancy maintenance and offspring 
sexual development (Tiboni and Ponzano 2016). Because 
of this, many aromatase inhibitor pharmaceuticals are 
contraindicated during pregnancy (Tiboni and Ponzano 
2016). CBD antagonizes progesterone 17 hydroxylase 
(Watanabe et al. 2005), which hydroxylates pregnenolone 
and progesterone (precursors to aldosterone), to form 
17-hydroxypregnenolone and 17-hydroxyprogesterone 

(precursors to cortisol) (Chormanski and Muzio 2023) 
(Table 4, Fig. 5). CYP3A7 hydroxylates testosterone and 
dehydroepiandrosterone 3-sulphate, a critical process 
in the production of estriol during pregnancy (CYP3A7 
Gene - Cytochrome P450 Family 3 Subfamily A Member 
7 n.d). By inhibiting CYP3A7 (Yamaori et al. 2011), CBD 
may have impacts on estriol creation or maintenance. 
CBD antagonizes CYP1B1 (Qian et  al. 2019) (Table  4, 
Fig. 5). CYP1B1 metabolizes exogenous compounds akin 
to other CYP enzymes, while also metabolizing endog-
enous compounds such as estrogen, arachidonic acid, 
melatonin, and retinoids (Li et  al. 2017). CBD inversely 
activates GPR3 and GPR12 (Table 2, Fig. 5) (Laun et al. 
2019). GPR3 and GPR12 have roles in female reproduc-
tion through ovarian aging, where both receptors main-
tain meiotic arrest of oocytes and premature ovarian 
aging (Hinckley et al. 2005). By antagonizing or inhibiting 
this complex of processes, CBD could be altering sex hor-
mone pathways.

CBD impacts processes that mediate metabolic 
homeostasis
CBD affects energy homeostasis and metabolism via mul-
tiple mechanisms. CBD accumulates in fat, muscle, and 
liver following consumption, however, females showed 

Table 4 CBD may alter the regulation of sex hormones

Enzyme Full enzyme name Interaction Reference(s)

Aromatase Estrogen synthetase/synthase Antagonism Almada et al. 2020)

17OHP/CYP17A1 Progesterone 17-hydroxylase Antagonism Watanabe et al. 2005)

CYP3A7 Cytochrome P450 3A7 Inhibition Yamaori et al. 2011)

CYP1B1 Cytochrome P450 1B1 Antagonism Yamaori et al. 2010)

Fig. 5 CBD may alter the regulation of sex hormones. CBD antagonizes multiple processes that regulate sex hormones, including CYP enzymes 
3A7, 1B1, and 17A1, and aromatase. Created with BioRender.com
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higher accumulation in the muscle and liver compared to 
males (Child and Tallon 2022). As discussed by Wiciński 
and colleagues, CBD impacts multiple metabolic pro-
cesses, including in maintaining glucose homeostasis, 
regulating adipose tissue insulin sensitivity, maintain-
ing low density lipid (LDL) and high density lipid (HDL) 
profiles, hypertension, and in the treatment of meta-
bolic syndrome in clinical studies (Wiciński et al. 2023). 
CBD activates PPARγ (O’Sullivan 2016) (Table 5, Fig. 6). 
PPARγ activation promotes fatty acid uptake, triglycer-
ide formation and storage in lipid droplets (Montaigne 
et al. 2021). This activation in turn increases insulin sen-
sitivity and glucose metabolism (PPARδ regulates glucose 
metabolism and insulin sensitivity | PNAS n.d). As such, 
CBD may impact insulin sensitivity and glucose tolerance 
via PPARγ. PPARγ is expressed in the brain, gastrointes-
tinal tract, liver, gallbladder, kidney, reproductive tissues, 
and lymphoid tissues, among others (Tissue expression of 
PPARG - Summary - The Human Protein Atlas n.d). CBD 
also increases lipolysis, the metabolic process by which 
triglycerols break down into glycerol and free fatty acids 
(Caldari-Torres et al. 2023) (Table 5, Fig. 6). In the liver, 
PPARγ activity regulates lipid accumulation, lipid uptake, 
triaglycerol storage, and the formation of lipid droplets 
(Wang et  al. 2020). In both human and mouse cultured 

mesenchymal stromal stem cells (MSCs), PPARγ ago-
nism by CBD increased lipid accumulation and increased 
the expression of adipogenic genes, markers of adipo-
genic differentiation (Chang et  al. 2022). Also in MSCs, 
CBD restores adipogenesis and chondrogenesis following 
lipopolysaccharide exposure (Ruhl et al. 2018). In murine 
skeletal muscle, PPARγ agonism increases adiponectin 
production and serves as a protective factor against sys-
temic insulin resistance (Amin et  al. 2010). Combined, 
the effects of CBD on PPARγ on metabolic outcomes 
may differ depending on the dose and the location of the 
receptor, increasing adiposity and lipid accumulation, or 
by impacting insulin resistance.

CBD both activates and antagonizes TRPV1 depend-
ing on the concentration (Muller et al. 2019; Anand et al. 
2020). TRPV1 regulates multiple metabolic processes 
depending on tissue (Luo et al. 2012). TRPV1 is expressed 
in the brain, liver, gallbladder, pancreas, muscle, and 
reproductive tissues (Tissue expression of TRPV1 - Sum-
mary - The Human Protein Atlas n.d). In the muscle, 
TRPV1 agonism by capsaicin increases PGC-1α expres-
sion, increases expression of genes involved in fatty acid 
oxidation and mitochondrial respiration, and increased 
oxidative fibers (Luo et  al. 2012). Additionally, in  vivo 
TRPV1 agonism enhances exercise endurance and 

Table 5 CBD interacts with regulators of energy homeostasis

Receptor Full receptor name Interaction Reference(s)

PPARγ Peroxisome proliferator-activated receptor gamma Agonism O’Sullivan 2016)

GPR 3 G-protein-coupled receptor 3 Inverse agonism Laun et al. 2019), (Laun and Song 2017)

GPR 6 G-protein-coupled receptor 6 Inverse agonism Laun et al. 2019), (Laun and Song 2017)

TRPV1 Transient Receptor Potential Cation Channel Subfamily V 
Member 1

Agonism, inhibits Muller et al. 2019; Anand et al. 2020)

Fig. 6 CBD interacts with regulators of energy homeostasis. CBD impacts regulators of energy homeostasis, including agonizing PPARγ, inversely 
agonizing GPR3 and GPR6, and agonizing and inhibiting TRPV1. Created with BioRender.com
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prevents high fat diet induced metabolic disorders (Luo 
et  al. 2012).  TRPV1−/− mice show decreased calcitonin 
gene related peptide (CGRP) production in the sensory 
neurons that innervate the pancreas, leading to improved 
insulin secretion and metabolic health (Riera et al. 2014). 
CBD inversely activates both GPR3 and GPR12 (Laun 
and Song 2017) (Table 2, Fig. 3). GPR3 and GPR12 both 
regulate obesity and energy balance (Bjursell et al. 2006; 
Godlewski et  al. 2015). GPR12 knockout mice have 
changes in body composition, including increased body 
weight and fat mass, coupled with metabolic disorders 
including decreased respiratory exchange ratio, hepatic 
steatosis, and dyslipidemia (Bjursell et  al. 2006). GPR3 
knockout mice have late-onset obesity (Godlewski et al. 
2015). These interactions suggest a potential mechanism 
by which CBD could improve metabolic homeostasis. 
Further studies are needed to understand the combinato-
rial effect of CBD on PPARs, TRPs, and GPCRs, as the 
metabolic impacts appear to be contradictory to each 
other. However, it is biologically plausible that differing 
tissues would have different responses to CBD exposure, 
leading to a net change or net neutral in overall meta-
bolic efficiency.

CBD mediates anti-inflammatory processes
CBD benefits chemotherapy patients, pain patients, and 
people with neurodegenerative disorders by serving as 
an anti-inflammatory agent (Sholler et al. 2020). As dis-
cussed by Atalay and colleagues (Atalay et  al. 2019), 
Pereira and colleagues (Pereira et  al. 2021), and Jîtcă 
and colleagues (Jîtcă et  al. 2023), CBD inhibits reactive 
oxygen species (ROS) production and produces an anti-
oxidative defense. CBD activates caspases 8 and 9 (Massi 
et  al. 2006), which subsequently induces the intrinsic 
apoptotic pathways (Massi et  al. 2006) (Table  6, Fig.  7). 
CBD antagonizes the lipoxygenase pathway (Massi et al. 
2008). The lipoxygenase pathway is a pro-carcinogenic 
pathway which, when active, generates proinflammatory 
mediations including leukotrienes and lipoxins (Wisastra 
and Dekker 2014) (Table 6, Fig. 7).

CBD antagonizes multiple pro-inflammatory pro-
cesses, leading to a subsequent decrease in inflamma-
tion. CBD decreases levels of TNF-α, NF-κB, TLR4 
and NLRP3 (Yndart Arias et al. 2023; Suryavanshi et al. 
2022; Chen et al. 2023) (Table 6, Fig. 7), the activation 
of which produce proinflammatory cytokines (Blevins 
et  al. 2022) and decreases proinflammatory cytokines 
IL-1β, IL-6, IL-8 (Suryavanshi et  al. 2022; Dinarello 
2000; Hoffmann et al. 2002; Xing et al. 1998). CBD sup-
presses caspase 1 (Yndart Arias et  al. 2023), decreas-
ing the pyroptosis pathway and subsequent immune 
cell activation (Molla et al. 2020) (Table 6, Fig. 7). CBD 
indirectly modulates  ADORA2A (Mecha et  al. 2013) 

(Table  6, Fig.  6) via inhibition of the adenosine trans-
porter, increasing adenosine levels which can in turn 
activate  ADORA2A (Pandolfo et al. 2011), which inhibits 
inflammation in microglia (Yuan et al. 2022). NLRP3 is 
suppressed by CBD (Yndart Arias et al. 2023; Suryavan-
shi et  al. 2022) (Table  6, Fig.  7). Additionally, CBD 
modulates P2X7 receptors (Liu et  al. 2020), which are 
a second signal for NLRP3 inflammasome activation 
and subsequent IL-1β release by decreasing calcium 
efflux (Table  6, Fig.  7) (Liu et  al. 2020). CBD activates 
PPARγ (O’Sullivan 2016), which subsequently inhibits 
the release of inflammatory cytokines (Jiang et al. 1998) 
(Table 6, Fig. 7).

CBD interacts with the mitogen activated protein 
kinase (MAPK) pathway (Hwang et  al. 2017), a signal 
transduction pathway that regulates gene expression, 
mitosis, apoptosis, and differentiation (Cargnello and 
Roux 2011) (Table 6, Fig. 7). CBD increases ERK1/2 and 
p38 activity within the MAPK pathway (Hwang et  al. 
2017; Vrechi et al. 2021) (Table 6, Fig. 7). ERK1/2, when 
activated, inhibits apoptosis and subsequently increases 
the rates of conversion from one cell type to another 
cell type (metaplasia) and increases rates of tumor 
development, as discussed by Mebratu and colleagues 
(Mebratu and Tesfaigzi 2009). Activation of p38, 
another component of the MAPK pathway, increases 
biosynthesis of proinflammatory cytokines (Xiao et  al. 
2002). Increased activity of both ERK1/2 and p38 
increase the phosphorylation and subsequent activity 
of ternary complex factor (TCF) and serum response 
factor (SRF) (Vickers et  al. 2004). Activation of TCF 
and SRF downregulate apoptotic pathways, similar to 
the effects of ERK1/2 activation (Vickers et  al. 2004). 
In a tumor microenvironment, inhibition of apopto-
sis furthers tumor progression (Gadiyar et  al. 2020). 
Additionally, CBD reduces the potency with which 
endogenous (2‐AG) and exogenous (THC) cannabi-
noids signal through the ERK1/2 pathway (Laprairie 
et al. 2015). CBD both activates and inversely activates 
GPR12 (Laun et al. 2019; Laun and Song 2017), which 
increases cell survival and protein kinase signaling to 
increase cell proliferation (Table  6, Fig.  7) (Lu et  al. 
2012). GPR12 agonism increases keratin 8 phospho-
rylation (Park et  al. 2016). Phosphorylation of keratin 
8 increases tumor cell migration, which contributes 
to metastatic capabilities of tumor cells (Busch et  al. 
2012). By agonizing components of the MAPK pathway 
and GPR12, CBD may increase tumor cell survival and 
migration. Henshaw and colleagues demonstrated that 
in  vivo animal model and clinical studies validate the 
in  vitro studies, as CBD consumption decreased pro-
inflammatory cytokines in > 90% of studies reviewed 
(Henshaw et al. 2021).



Page 15 of 25Swenson  Journal of Cannabis Research            (2025) 7:24  

How can CBD be interacting with so many processes?
Though not yet fully mechanistically understood, there 
are multiple potential reasons as to why CBD is able to 
bind with multiple different receptors, enzymes, and ion 
channels in different pathways. The first primary distinc-
tion is that CBD serves as a ligand to some receptors 
directly, but participates in allosteric binding with many 
other receptors, as discussed. Previous studies demon-
strate that individual ligands act as allosteric modulators 
for multiple receptors, dramatically increasing the num-
ber of biological effects a single ligand can have (Wang 
et al. 2009). Additionally, some receptors may have mul-
tiple binding sites to allow the receptor to interact with 
multiple ligands (Ma et  al. 2002; Alhosaini et  al. 2021). 
In this case, a smaller number of the receptor binding 
sites would need to be functionally able to bind to CBD 
in order to produce the same effect on the receptor. In 

consort with having multiple binding sites, some recep-
tors are considered promiscuous receptors and regularly 
bind multiple ligands of different structures (Alhosaini 
et al. 2021; Gilberg et al. 2019). Some receptor pathways 
have multiple receptor subtypes or isoforms that pro-
duce the same downstream effect (Baker and Hill 2007), 
further increasing the likelihood that CBD could chemi-
cally interact with the pathway. When interacting with 
complex signal transduction pathways, CBD may indi-
rectly induce multiple downstream effects by agonizing 
or antagonizing an upstream receptor. In this case, CBD 
may indirectly impact multiple processes without need-
ing to directly interact with the downstream intermedi-
ates. Similarly, CBD may interact with systems that have 
high levels of redundancy, or similar downstream pro-
cesses (Mantovani 2018). By having multiple upstream 
pathways induce a downstream effect, this increases the 

Table 6 CBD impacts inflammatory and apoptotic pathways

*  IL-1 is also known as lymphocyte activating factor, endogenous pyrogen, catabolin, hemopoietin-1, melanoma growth inhibition factor, and osteoclast activating 
factor (Chiu et al. 2021)
**  P38 MAPK is also called RK or Cytokinin Specific Binding Protein (CSBP) (Yang et al. 2014)
***  ERK1/2 is also called MAPK42/44 (Lucas et al. 2022)

Receptor/factor/enzyme Full receptor/ factor/enzyme name Interaction Reference(s)

Caspases
 Caspase-1 Cysteinyl aspartate protease 1 Suppresses Yndart Arias et al. 2023)

 Caspase 8 Cysteinyl aspartate protease 8/9 Agonizes Massi et al. 2006)

 Caspase 9 Cysteinyl aspartate protease 8/9 Agonizes Massi et al. 2006)

Receptors
 PPARγ Peroxisome proliferator-activated 

receptor gamma
Agonizes O’Sullivan 2016)

 P2X7 P2X7 Modulates Liu et al. 2020)

  ADORA2A Adenosine  A2A receptor Modulates Mecha et al. 2013)

 TNF-α Tumor necrosis factor α Decreases Suryavanshi et al. 2022)

 NF-κB Nuclear factor kappa B Decreases Chen et al. 2023)

 NLRP3 Intracellular "NOD-like" receptor (NLR) 
proteins

Suppresses Yndart Arias et al. 2023), (Suryavanshi 
et al. 2022)

TLR4 Toll like receptor 4 Decreases Chen et al. 2023)

G-protein-coupled receptors
 GPR 3 G-protein-coupled receptor 3 Inversely activates, activates Laun et al. 2019), (Laun and Song 2017)

 GPR 6 G-protein-coupled receptor 6 Inversely activates, activates Laun et al. 2019), (Laun and Song 2017)

 GPR 12 G-protein-coupled receptor 12 Inverse activates, activates Laun et al. 2019), (Laun and Song 2017)

Interleukins
 IL-1β* Interleukin-1β Decreases Suryavanshi et al. 2022)

 IL-6* Interleukin-6 Decreases Suryavanshi et al. 2022)

 IL-8* Interleukin-18 Decreases Suryavanshi et al. 2022)

MAPK Pathway
 p38 MAPK pathway** Mitogen activated protein kinase Activates Hwang et al. 2017)

 ERK1/2*** Extracellular signal-regulated kinase Activates Vrechi et al. 2021)

 Reduces both potency and effi-
cacy of endogenous and exogenous 
cannabinoids on ERK1/2-PLCβ3-
dependent signaling

Interaction Laprairie et al. 2015)
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likelihood that CBD may structurally interact with one 
of the receptors. Lastly, some receptors may undergo 
conformational changes upon ligand binding (Frimurer 
et al. 2003). By changing the structure of the binding site, 
receptors may conform to a structure that CBD is capable 
of interacting with, only after binding of another ligand 
(Kondra et al. 2022). However, the morphological struc-
ture of these receptors are still being classified (Reggio 
2010). As CBD gains significant traction in research, fur-
ther studies are needed to understand how CBD specifi-
cally is able to interact with so many pathways.

In addition to CBD’s ability to bind with many recep-
tors and interact with so many pathways, CBD may have 
an additional indirect impact on receptor activity by 
impacting the membrane fluidity of the cell the recep-
tors are present on (Watkins 2019). Because CBD is 
highly lipophilic, it’s interactions with the lipid bilayer 
of cells has been under recent investigation. Nelson and 
colleagues propose that this impact on membrane fluid-
ity has a direct impact on CBD’s promiscuity to recep-
tors (Nelson et al. 2020). Watkins proposes that CBD can 
increase membrane fluidity, and subsequently change the 
conformation and gating kinetics of channels embed-
ded in the membrane (Watkins 2019). Further studies 
are needed to elucidate the connections between CBD, 
membrane fluidity, and channel activity.

Effects of acute CBD exposure may differ from chronic 
exposure
CBD may be consumed in acute settings (for example, 
for a sleep aid, a nausea suppressant, etc.), or chronically 
(Epidiolex prescriptions for seizure, etc.). Little is known 
about the differential effects of acute versus chronic 

CBD exposure. Receptors may have differential activ-
ity depending on acute or chronic exposure (Jacobson 
et  al. 1996). For example, a receptor may activate read-
ily upon acute exposure, though under chronic exposure, 
the receptor may become overactivated and subsequently 
become downregulated either through decreased expres-
sion levels or cell surface presentation (Posner and 
Laporte 2010). Conversely, other receptors may continue 
to signal at maximum capacity despite chronic activation 
(Jacobson et al. 1996). For example, when CBD activates 
one receptor, I may see an upregulation of downstream 
signaling cascades. If that receptor is downregulated, 
CBD may activate the receptor, but the long-term output 
would mimic that CBD antagonized the receptor because 
the receptor was downregulated and no longer signaling 
or weakly signaling.

Biological effects of CBD are likely dose dependent
The activation of some CBD receptors varies depend-
ing on the dose of CBD and the affinity of CBD for the 
receptor (Lucas et al. 2018). For example, CBD activates 
TRPV1 at high concentrations (10–30 mM) and inhibits 
TRPV1 at low concentrations (1 mM) in varying cell cul-
ture models (Muller et  al. 2019; Anand et  al. 2020). For 
many receptors, the threshold of interaction with CBD 
has yet to be defined. It is possible that at low doses, CBD 
binds and interacts with a subset of receptors, while at 
high doses it interacts with a different subset of recep-
tors in addition to high-affinity receptors. Additionally, 
high-dose exposure has the potential to downregulate 
certain receptors, leading to decreased receptor expres-
sion and activity. Because the body of research on CBD 
varies in methodologies (cell culture, animal model, and 

Fig. 7 CBD impacts inflammatory and apoptotic pathways. CBD interacts with multiple components of inflammatory and apoptotic pathways. CBD 
antagonizes TLR4, lipoxygenase, interleukins 1α, 1β, 6, 18, TNFα, NFκB, NLRP3, and caspase 1. CBD activates caspases 8 and 9, G protein-coupled 
receptors GPR3, 6, and 12, PPARγ,  ADORA2A, ERK1/2, and MAPK. CBD inversely activates GPR 3, 6, and 12, and allosterically modulates P2X7. Created 
with BioRender.com
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concentration) the effects of CBD cannot be directly 
compared. Because of this, not all effects mentioned are 
likely to be found at all doses. Further research is neces-
sary to investigate the differential effects of CBD at stand-
ard dosing protocols to be translationally relevant.

Consumption method affects pharmacodynamics of CBD
As discussed by Lucas and colleagues, the pharmacoki-
netics of CBD vary based on method of consumption 
(Lucas et  al. 2018). Common methods of consumption 
of CBD include oral consumption in the form of gum-
mies, foods, or oils, inhalation methods such as smok-
ing or vaping, sublingual consumption of oils, topically 
in a lotion, or via transdermal application (Corroon and 
Phillips 2018). Sublingual consumption and inhalation 
methods have the most concentrated effect, as uptake of 
CBD is unimpeded (Lucas et al. 2018; Huestis 2007). Vap-
ing products tend to be more concentrated than smok-
ing products, leading to higher blood stream CBD levels 
(Lucas et  al. 2018). Oral consumption of CBD products 
requires the CBD to undergo first pass metabolism in the 
liver, which causes a tenfold reduction in available CBD 
to be metabolized before entering the circulatory sys-
tem (Franco et al. 2020). Because of this, peak metabolite 
concentration following oral consumption is significantly 
slower than that of smoking, vaping, or sublingual con-
sumption (Lucas et  al. 2018). Topical and transdermal 
applications lead to the lowest levels of circulating CBD 
and CBD metabolites (Lucas et  al. 2018). In addition to 
the varying impact of method of consumption on phar-
macokinetics, differences in metabolism and binding of 
CBD may differ from CBD metabolites. However, in the 
context of receptor activation, few studies elucidate the 
differential impact of CBD from the major metabolites, 
including 7-OH CBD, CBD-glucuronide, and 10-OH-
7-COOH-CBD (Ujváry and Hanuš 2016). As each metab-
olite varies slightly in structure, receptor binding ability 
or affinities may differ (Ujváry and Hanuš 2016). These 
many metabolites may contribute to the mechanism by 
which CBD acts on such a wide variety of receptors, as 
each metabolite has a slightly different structure and can 
therefore interact as ligands to receptors with different 
binding sites.

Challenges and Limitations
CBD research faces several significant challenges that 
complicate the interpretation and application of find-
ings. One major limitation is the difficulty in sourcing 
high-quality and standardized CBD for research pur-
poses, which hinders replication and consistency across 
studies. Additionally, basic science and preclinical stud-
ies vary widely in dosing regimens and routes of admin-
istration, making it difficult to compare findings or 

translate them to human applications. In human stud-
ies, variability in cannabinoid formulations—ranging 
from pure CBD isolates to full-spectrum extracts with 
other cannabinoids—further complicates comparisons 
across trials.

A critical translational gap exists between in vitro and 
in  vivo research, as many reported effects may not be 
achievable at physiologically relevant doses in humans. 
The lack of standardized dose–response studies makes 
it difficult to determine whether findings from basic 
science research hold clinical significance. Addition-
ally, research often fails to distinguish between acute 
and chronic exposure, limiting our ability to predict 
long-term outcomes. Existing studies have tested a 
broad range of doses, from low doses (~ 5–25  mg/
day) used in wellness products to high doses (300–
1,500  mg/day) investigated in clinical trials for condi-
tions such as epilepsy and anxiety. However, data on 
the effects of chronic, moderate-dose CBD use remain 
limited. Addressing these limitations requires carefully 
designed studies that evaluate CBD’s pharmacokinet-
ics, bioavailability, and sustained effects across different 
dosing regimens and patient populations.

Future directions and implications for clinical practice
Future research must bridge the gap between preclini-
cal findings and human applications by ensuring trans-
lational relevance in dosing, administration routes, and 
outcome measures. Studies should clearly document 
the sourcing and composition of CBD formulations to 
improve reproducibility and clinical applicability. Addi-
tionally, making research findings widely accessible is 
essential, as clinicians and researchers across various 
disciplines need accurate and transparent data to guide 
patient care. This is particularly important given that 
patients may use CBD off-label, recreationally, or as a 
prescribed treatment, necessitating a comprehensive and 
evidence-based understanding of its effects across differ-
ent populations. For example, research must define safe 
co-administration guidelines and identify potential risks 
associated with long-term CBD use in polypharmacy 
settings given the impact on CYP enzymes. Given the 
widespread use of CBD across different patient popula-
tions, future studies should prioritize personalized CBD 
therapy, evaluating how genetic, metabolic, and environ-
mental factors influence individual responses. Long-term 
safety trials are essential to guide clinical recommenda-
tions, regulatory policies, and patient education. Stand-
ardizing research methodologies, ensuring transparent 
reporting, and making findings accessible to healthcare 
providers will be key to integrating CBD into evidence-
based clinical practice.
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Conclusion
CBD is rapidly gaining traction both in the pharmaceu-
tical industry and as a widely available supplement to 
aid common ailments like nausea or insomnia, to rare 
conditions like childhood epilepsy (Abu-Sawwa et  al. 
2020; Data and Statistics. April 22  2022). As CBD con-
sumption is not regulated, patients may co-consume 
CBD with pharmaceutical medications. CBD’s interac-
tion with multiple body systems, and its effects on drug 
metabolism pose potential risks to unsuspecting patients. 
Clinicians and clinical researchers should ask patients 
about CBD consumption and should educate patients 
on potential drug-drug interactions. This review com-
piles the many processes that CBD interacts with that 
can confer multiple impacts, including affecting nausea, 
insomnia, seizure, sex hormone regulation, drug metabo-
lism, and inflammation. While CBD has many beneficial 
effects, many of these interactions also have the potential 
to confer harm, meaning that CBD consumption should 
be monitored, especially when co-consumed with phar-
maceutical or recreational substances. Further research is 
needed to understand the interactions between the pro-
cesses included herein, and the translation from cell cul-
ture or animal model studies into human consumption 
through clinical research studies.

Abbreviations
2-AG  2-Arachidonoylglyerol
5HT1A  5-Hydroxytryptamine receptor 1A
5HT3A  5-Hydroxytryptamine receptor 3A
17OHP  Progesterone 17-hydroxylase
ACOG  American College of Obstetrics and Gynecology
ADORA2A  Adenosine  A2A receptor
AEA  Anandamide
Caspase  1-Cysteinyl aspartate protease 1
cAMP  Cyclic adenosine monophosphate
CBD  Cannabidiol
CBDV  Cannabidivarin
CBC  Cannabichromene
CBCV  Cannabichromevarin
CBG  Cannabigerol
CBDA  Cannabidioloic acid
CBGA  Cannabigerolic acid
CBGV  Cannabigerovarin
CBN  Cannabinol
CBNA  Cannabinolic acid
CB1  Cannabinoid receptor type 1
CB2  Cannabinoid receptor type 2
CPS  Child Protective Services
CYP  Cytochrome p450 enzyme
CYP3A5  Cytochrome P450 3A5
CYP3A7  Cytochrome P450 3A7
CYP3A4  Cytochrome P450 3A4
CYP2C9  Cytochrome P450 2C9
CYP1A1  Cytochrome P450 1A1
CYP1A2  Cytochrome P450 1A2
CYP1B1  Cytochrome P450 1B1
CYP2D6  Cytochrome P450 2D6
CYP2C19  Cytochrome P450 2C19
CYP2B6  Cytochrome P450 2B6
CYP2J2  Cytochrome P450 2J2
D2  Dopamine receptors

ERK1/2  Extracellular signal-regulated kinase
FAAH  Fatty acid amine hydrolase
FDA  Food and Drug Administration
GPR55  G protein-coupled receptor 55.
GlyRs  Ligand-gated glycine receptors
GPR3  G protein-coupled receptor 3.
GPR6  G protein-coupled receptor 6.
GPR12  G protein-coupled receptor 12
GPX  Glutathione peroxidase
IDO1/2  Indoleamine-pyrrole 2,3-dioxygenase
IL-1β  Interleukin-1β
IL-6  Interleukin-6
IL-8  Interleukin-8
KV7.2/3  Potassium voltage-gated channel subfamily KQT member 2 and 3
MAPK  Mitogen activated protein kinase
NaV1  Sodium channel protein type 1 subunit
NF-κB  Nuclear factor kappa B
NIDA  National Institute of Drug Abuse
NLRP3  Intracellular “NOD-like” receptor (NLR) family pyrin domain con-

taining 3
NVP  Nausea and vomiting in pregnancy
PGC-1α  Peroxisome proliferator-activated receptor gamma coactivator 

1-alpha
PPARα  Peroxisome proliferator-activated receptor alpha
PPARγ  Peroxisome proliferator-activated receptor gamma
THC  Tetrahydrocannabinol
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