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Abstract 

Modified atmosphere packaging (MAP) alters the gaseous composition of air surrounding packaged goods to pre-
vent deleterious oxidation associated reactions. MAP has been adopted for the storage of cannabis, though a recent 
study revealed little difference in terpene content under MAP conditions. Questions regarding its efficacy for pres-
ervation of high value compounds like terpenes and cannabinoids lost during postharvest storage remain. The goal 
of this research is to determine weather N2 MAP preserves high value compounds of cannabis during its postharvest 
storage. This experiment followed a completed randomized block design. There were two factors of interest. The first 
was storage atmosphere (atmospheric or N2 MAP). The second was storage duration (18, 46, or 74 days). The experi-
ment was then blocked by cannabis chemovar using 5 different chemovars. The concentration of 17 cannabinoids 
was evaluated through UPLC-UV and 61 volatile terpene compounds through GC–MS. Concentrations were com-
pared over time and between storage treatments. There were no significant differences in total cannabinoids and vol-
atile terpene compounds over time or between storage treatments. Individual cannabinoids Δ9-THC, CBG, CBNA, CBC, 
THCV, and THCVA all increased during storage time while THCA decreased. CBG and THCV only increased under MAP 
storage. Individual aromatics limonene, β-pinene, α-pinene, camphene, and terpinolene all only decreased dur-
ing storage under N2 MAP. Only caryophyllene oxide and α-humulene increased under N2 MAP storage. β-Myrcene 
decreased under atmospheric storage, but not under N2 MAP. While N2 MAP had no effect on the preservation 
of total cannabinoids and aromatics during storage, it did influence several individual compounds. CBG, THCV, 
and α-humulene all increased under N2 MAP. N2 MAP also maintained the concentration β-myrcene over time, 
though the preservation of β-myrcene was offset by a decrease limonene. Overall, N2 MAP was not needed for preser-
vation of most high value compounds but did have an effect of some compounds with reputed therapeutic benefits.
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Introduction
Cannabis (Cannabis sativa) originated near central 
Asia more than 10,000 years ago and would eventually 
be established throughout the world via anthropogenic 
means, with fossils dating its human consumption back 
thousands of years (Pisanti and Bifulco 2018; Okazaki 
et  al. 2011). Cannabis is typically recognized for its 
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content of cannabinoids, terpenes, terpenoids, flavo-
noids, and alkaloids (Kollar et al. 2016). Recent research 
has emerged demonstrating the importance of terpenes 
and terpenoids for perceived product quality (Booth 
and Bohlmann 2019; Tanney et  al.  2021; Plumb et  al. 
2022) and their potential medical benefits are well char-
acterized (Miyazawa and Yamafuji 2005; Gaggiotti et al. 
2020; Hanŭs and Hod 2020). Yet volatile terpenes and 
terpenoids contributing to cannabis aroma decrease up 
to 50% within 1  month of postharvest storage (Bueno 
et  al. 2020), and degradation of cannabinoids is well 
documented (Fairbairn et  al. 1976; Grafström et  al. 
2019; Lindholst 2010; Mazzetti et  al. 2020). Industry 
interest retaining these high-value compounds (HVCs) 
has seen the adoption of modified atmospheric packag-
ing (MAP) technologies within the Canadian cannabis 
market space.

MAP modifies the gaseous composition of atmos-
pheric air within a sealed container to extend shelf life 
and preserve product quality (Utama 2020). Degradation 
of lipids via oxidization is often associated with reduc-
tions in product flavour and aroma (Labuza and Dugan 
1971; Aj 1996). Oxygen molecules present in the air react 
with unsaturated fatty acids, ultimately forming unstable 
hyperoxide free radicals that undergo a cascade of further 
reactions (Domínguez et  al. 2019). Most cannabinoids, 
terpenes, and other high-value metabolites are stored 
in the glandular trichomes of cannabis (Johnson 1975; 
Hammond and Mahlberg 1978; Kim and Mahlberg 1997; 
Livingston et  al. 2019). Structurally, the trichome is 
encapsulated by a cuticle which includes varying lipidic 
constituents (Mahlberg and Kim 1991; Lara et  al. 2015; 
Liu et  al. 2022) and its oxidation represents a potential 
mechanism for accelerated loss of HVCs under atmos-
pheric storage conditions (MacLaughlin and MacDonald 
2024). Several studies have demonstrated the efficacy of 
MAP for delaying lipid oxidation, improving food prod-
uct stability, and extending shelf life of other products 
(Marasca et al. 2016; Zhao et al. 1994; Kitabayashi et al. 
2018).

MAP infrastructure represents a significant cost to 
producers, and limited research on its efficacy for stor-
age of dried cannabis currently exists (MacLaughlin and 
MacDonald 2024). Bueno et al. (2020) recently reported 
no improvement in the retention of volatile terpenes 
over an atmospheric control with similar argon-based 
MAP strategies for storage of dried cannabis. However, 
N2 MAP technologies have demonstratable efficacy for 
preservation of volatiles across a range of other agricul-
ture products that include coffee (Coffea arabica), lemon 
verbena (Aloysia citrodora), potato chip seasoning, and 
milk powder (Marin et al. 2008, Ebadi et al. 2016, Agar-
wal et al. 2018; Lloyd et al. 2009).

The composition of cannabinoids and terpenes is 
affected by many factors, both endogenous and exog-
enous, which makes analysis a challenging task. Canna-
bis cultivars are well established to have vast differences 
in cannabinoid profiles (Hazekamp et al. 2016, Danziger 
and Bernstein 2021). For example, average tetrahydro-
cannabinol (THC) from control “Fuji” cultivars was 
approximately 60–70% higher than “Himalaya” cultivar 
(Danziger and Bernstein 2021). The positioning of inflo-
rescences, height of the tissue, and type of tissue sam-
pled all also have a significant effect in chemical profiles 
(Bernstein et  al. 2019a, Danziger and Bernstein 2021, 
Ghosh et  al. 2023). Cultivation practices can also have 
a profound effect on the chemical profile of cannabis. 
Growing cannabis at a higher plant density decreased 
several cannabinoids from lower inflorescences, though 
had much less effect on high inflorescences (Danziger 
and Bernstein 2022). Even mineral nutrition or other soil 
additives can affect cannabinoids. Supplementation with 
NPK fertilizer increased cannabigerol (CBG) concentra-
tion of flowers by 71% and decreased cannabinol (CBN) 
in flowers and inflorescences (Bernstein et  al. 2019b). 
Further, the ratio of N:P:K fertilization could introduce 
variability. Supplementation of P at rates greater than 
5  mg L−1 decreased the concentration of Δ9-THC and 
cannabidolic acid (CBDA) (Shiponi and Bernstein 2021). 
Supplementation with K decreased the acidic forms of 
cannabinoids while non-acidic forms were generally 
unaffected (Saloner and Bernstein 2022). Similarly, ter-
penoids also tended to decrease with increasing concen-
trations of K, though this effect had a degree of genotype 
specificity (Saloner and Bernstein 2022). Considering the 
myriad of well-established factors above, any chemical 
profile analysis of cannabis must take great care to mini-
mize the experimental error caused by spatial variability 
or growing conditions.

This study aims to compare changes in HVCs of dried 
cannabis inflorescence stored under N2 MAP and atmos-
pheric conditions, addressing limitations of previous 
work by increasing sampling size, developing a standard-
ized sampling protocol to reduce phenotypical variance, 
and offer comprehensive insights on MAP of dried can-
nabis for preservation of HVCs. The results of this study 
will enable producers to make informed decisions regard-
ing implementation of MAP infrastructure and exploring 
potential options for improved consumer experiences.

Methods
Growing conditions
Five cannabis (Cannabis sativa L.) cultivars (“Mango 
Sour”, “Apple Pancakes”, “CV3”, “Chem Dozer”, and 
“Blackwater”) were grown at a health Canada licensed 
facility (EastCann, Halifax, NS, Canada). Rooted cuttings 
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were individually transplanted into 8 L Canna COCO 
flex bags (Canna Canada, Ottawa, ON, Canada) and 
grown under LED lighting throughout both photoperiod 
phases. Vegetative growth was carried out under a 24-h 
lighting schedule for 42 days, followed by flowering with 
a 12/12-h photoperiod for 67 days. Lower branches were 
removed at day 1 of flowering, and defoliation occurred 
at day 28 of flowering yielding a slightly modified ver-
sion of the “bottom branches and leaves removal” train-
ing method described by (Danziger and Bernstein 2021). 
Plants were grown for a combined total of 95  days and 
harvested by hand harvested for drying.

Experimental design
This experiment followed a completely randomized block 
design with two factors of interest and a potential inter-
action effect (Fig.  1). The first factor was MAP. Treated 
cans underwent active MAP treatment via a proprietary 
canning line utilizing liquid nitrogen to achieve oxygen 
levels ≈4% (N2 MAP) while the control cans were sealed 
under atmospheric air at oxygen levels ≈ 21% (atmos-
pheric storage). The second factor was storage time, 
where samples were under storage for 18 days, 46 days, 
and 74 days. Samples had to be shipped for analysis pre-
venting analysis prior to storage. However, it is reason-
able to assume that there were no significant differences 
initially because there would be no degradation yet and 
MAP treatment would not have been imposed. Finally, 
the design used cultivar as a blocking factor. Ultimately, 
this experiment required 30 samples.

Sample collection
Two apical inflorescences of approximately the same 
height and size were selected per plant to produce an A 
and B sample and reduce phenotypical variance, while 
also limiting variation from positioning. Height and type 
of tissue have significant variation in chemical profiles 
(Bernstein et  al. 2019a, Danziger and Bernstein 2021), 

which would make a true comparison impossible without 
carefully selected samples. Samples were carefully labeled 
to identify the individual plant as well as the A and B 
inflorescence.

Postharvest treatment
Labeled samples were hung and air dried at 14 °C and 50% 
relative humidity for 14 days, then hand trimmed. Sam-
ples of dried inflorescence were collected from the apical 
end of branches and placed into steel cans (48.0 mm in 
height and 83.3 mm in diameter), until a sample weight 
of 3.5 g was obtained. Treatment (N2 MAP) or no treat-
ment (atmospheric conditions) was randomly assigned 
to the A inflorescence, with B receiving the remain-
ing option. Samples were shipped to Supra Research 
and Development (Kelowna, BC, Canada) for analysis. 
Response variables quantified include15 different major 
cannabinoids and 23 terpenes. Analyzed cannabinoids 
were Δ9-THC, Δ8-THC, CBC, CBCA, CBDA, CBDV, 
CBDVA, CBG, CBGA, CBL, CBN, CBNA, THCA, 
THCV, and THCVA. Analyzed terpenes and related 
compounds were α-Pinene, terpinolene, camphene, linal-
ool, β-pinene, β-myrcene, β, caryophyllene, α-humulene, 
limonene, trans-nerolidol, eucalyptol, guaiol, fenchone, 
cis-β-ocimene, trans-β-ocimene, caryophyllene oxide, 
octyl acetate, borneol, α-terpineol, α-bisabolol, terpinen-
4-ol, geranyl acetate, and β-cedrene. Additional details 
can be found in Supplemental Tables I and II).

Cannabinoid analysis
Extraction and analysis of cannabinoids was conducted 
according to Riordan-Short (2023a). Dried inflores-
cence samples were ground with an electric grinder until 
homogenous and subsamples prepared for respective 
analytical methodologies. A 0.2 g subsample was weighed 
and extracted using 20  mL methanol. Samples were 
placed in an ultrasonic bath and sonicated for 10  min, 
vortexed, and then cold stabilized at −20  °C for 1  h. 

Fig.1  Experimental design for analysis for MAP and storage duration on terpenoids and cannabinoids in cannabis
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Samples were then centrifuged for 5  min at 4200  rpm. 
A 10 µL aliquot of supernatant was diluted in 990 µL of 
mobile phase diluent mix and vortexed for 10 s.

Cannabinoid analysis was conducted via a Vanquish™ 
UPLC with UV-detector (Thermo Fisher Scientific, 
Waltham, MA, USA) and an Ascentis™ Express 90  Å 
C18 15 cm × 2.1 mm × 2 µm (Supelco #50,814-U) UPLC 
column. Mobile phase and instrument details are shown 
in Supplemental Table III. A 40  µg/mL standard stock 
solution was made consisting of all tested cannabinoids, 
then a calibration curve was made with 0 (blank), 0.01, 
0.05, 0.1, 0.5, 2, 10, and 25 µg/mL dilutions. A 1 mg/mL 
ibuprofen solution was used as a check standard. Also, 
a second cannabinoid solution made from reagents with 
a different lot number than those use in calibration was 
used as an independent check standard. All standards 
were purchased from Restek (Bellefonte, PA, USA).

Terpenoid analysis
Extraction and analysis of terpenoids was conducted 
according to Riordan-Short (2023b). A 0.2  g subsample 
was collected and extracted in 20 mL of hexane. Samples 
were vortexed for 10 s, then placed in an ultrasonic bath 
for 10  min. Samples were then vortexed again for 10  s 
and centrifuged for 5 min at 4200 rpm. A 10 µL aliquot of 
supernatant was diluted into 990µL of hexane.

Terpenoid analysis was completed with an ISQ™ 7000 
single quadrupole GC–MS and TRACE™ 1310 column 
(Thermo Fisher Scientific, Waltham, MA, USA). Specific 
instrument parameters are described in Supplemental 
Tables IV and V. Standards were prepared by mixing 5 
µL of Terpene Mega Mix #1 and #2 (Restek, Bellefonte, 
PA, USA) in 1240 µL of isopropanol and toluene, respec-
tively. A 10 µg/mL solution of d3-Linalool was used as an 
internal standard. The calibration curve was made with 
0 (blank), 0.04, 0.08, 0.16, 0.32, 0.63, 0.125, 0.25, 0.5, and 
1.0  µg/mL dilutions. Also, a second terpenoid solution 
made from reagents with a different lot number than 
those use in calibration was used as an independent 
check standard.

Statistical analysis
Data analysis was conducted using Minitab® 21.4.2 sta-
tistical software. A general linear model was used with 
the model including main effect of atmospheric stor-
age, main effect of storage duration, the interaction 
between atmospheric storage and storage duration, and 
the blocking effect of chemovar. Factor levels included 
chemovar with 5 levels, time with 3 levels, and treat-
ment with 2 levels and 29 total degrees of freedom for 
each response. Response variables analyzed included 15 
separate cannabinoids, total cannabinoids, 22 terpenes, 
1 aromatic compound, and total aromatic compounds 

for a total of 40 response variables. Fisher’s LSD pairwise 
comparisons with 95% confidence were then conducted 
for all response variables. Since the chemovar had no 
interactive effect with any other variable, response vari-
able concentrations of all compounds were analyzed and 
reported. Statistical assumptions of normality and con-
stant variance were confirmed through Minitab. Inde-
pendence is assured through randomization and the fact 
unique samples are used for each storage duration versus 
repeated measurements on the same sample.

Results
There was no significant difference due to MAP treat-
ment or storage time for total cannabinoids (p = 0.226). 
Individual cannabinoids with significant differences 
(p < 0.05) over time included THCA, Δ9-THC, CBG, 
CBNA, CBC, THCV, and THCVA (Table  1). All fol-
lowing cannabinoid comparisons are between 18 and 
74 days. There was a 216% increase in Δ9-THC between 
in the atmospheric treatment, but significantly higher 
359% increase under N2 MAP. There was no change in 
CBG under atmospheric storage, but 49% increase in 
CBG under N2 MAP. There was a 17–20% increase in 
CBNA during storage, but no difference between MAP 
and atmosphere treatments. CBC increased during 
storage but there was no difference between MAP and 
atmospheric treatments. Finally, THCV did not change 
over time under atmospheric storage, but increased sig-
nificantly under N2 MAP. Consequently, N2 MAP had 
higher Δ9-THC, THCVA, and THCV after storage than 
the atmospheric control. THCA was the only cannabi-
noid to significantly (p < 0.05) decrease, albeit only by 
6–7% and with no difference between atmospheric and 
MAP treatments.

There was no significant difference due to MAP treat-
ment or storage time for total terpenoids concentra-
tion (p = 0.191 and 0.174, respectively). However, there 
were significant differences (p < 0.05) in many specific 
terpenoids (Table  2). Some compounds only changed 
over time under one treatment. β-myrcene was the 
most prominent terpenoid in cannabis but decreased 
33% under atmospheric storage with no significant 
decrease under N2 MAP. Conversely, limonene, β-pinene, 
α-pinene, camphene, and terpinolene all only decreased 
under N2 MAP. Caryophyllene oxide and α-humulene 
only increased under N2 MAP storage by 29% and 52%, 
respectively while fenchol increased by 16% under atmos-
pheric storage. Other compounds, such as α-terpineol 
and trans-nerolidol increased over time regardless of 
storage treatment.

There were two significant (p < 0.005) trends over stor-
age time that occurred when compounds were grouped 
into terpene and terpenoid classes (Table 3). The first is 
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that monoterpenes decreased 62% more under N2 MAP 
than atmospheric storage. The second is that sesquiter-
penes increased 50% more under N2 MAP than atmos-
pheric storage. Changes under storage resulted in a shift 
in monoterpene:sesquiterpene from 2.01 under atmos-
pheric storage to 1.79 under N2 MAP. There were no sig-
nificant differences in the relative changes in terpenoid 
classes.

Discussion
Cannabinoids and aromatic compounds of dried canna-
bis inflorescence are HVCs with important roles in can-
nabis’ effects (Taura et al. 2007) and consumer perception 
of quality (Booth and Bohlmann 2019; Tanney et al. 2021; 
Plumb et al. 2022). A single month of storage can see a 
50% loss in levels of terpenes (Bueno et  al.  2020), and 
degradation of cannabinoids via various pathways over 
time has been consistently demonstrated (Fairbairn 
et al. 1976; Grafström et al. 2019; Lindholst 2010; Maz-
zetti et al. 2020). In our study, a canning line employing 
active N2 MAP under current commercial application 
was investigated for its efficacy to improve retention of 
cannabis HVCs during postharvest storage.

To our knowledge this paper represents the only mod-
ern study on changes in cannabinoids over time in plant 
material of dried cannabis under N2 MAP since the 
work of Turner et  al. (1973), who reported the absence 

of light as more important than N2 for maintaining lev-
els of Δ9-THC. Fairbairn et  al. (1976) documented can-
nabinoid degradation rates at varying temperatures, 
Zamengo et  al. (2019) studied changed under a variety 
of storage conditions, and Trofin et  al. (2011) studied 
stability of select cannabinoids over a four year period. 
The consensus is that cannabinoids decrease over time 
during storage, which is accelerated by light or high tem-
peratures (Fairbairn et  al. 1976; Grafström et  al. 2019; 
Lindholst 2010; Mazzetti et  al. 2020; Zamengo 2019). 
However, our study contradicts the consensus because 
there was no degradation in total cannabinoids regard-
less of storage treatment. Perhaps the difference is that 
our study included the commercial canning process for 
postharvest storage. The canning process itself reduces 
the potential for gas exchange significantly and may have 
contributed to the preservation of cannabinoids. It is sug-
gested that canning alone could be effective for maintain-
ing HVCs with post-harvest storage times up to 76 days. 
Lindholst (2010) has also previously demonstrated the 
role of oxygen availability in reducing THC degradation 
rates of dried resin. It is also possible that more time was 
required to observe degradation, as some previous work 
would investigate degradation after years of storage ver-
sus weeks or months (Fairbairn et  al. 1976; Zamengo 
et al. 2019). Previous studies have also frequently incor-
porated a smaller number of cannabinoids, and evaluat-
ing total cannabinoid dynamics was not feasible.

Table 1  Mean cannabinoid concentrations of cannabis stored in ambient atmosphere or N2 modified atmospheric packaging. 
Cannabinoids that differ significantly (p < 0.05) after storage or between treatments are marked with an asterisk. Those means with 
different superscript letters are significantly different as determined by Fisher’s least significant difference and indicate differences 
across each row. The Δ column indicates the direction of change between 18 and 74 days when it was significant

Compound (mg/g) Atmospheric Storage N2 MAP Storage

18 days 46 days 74 days Δ 18 days 46 days 74 days Δ

THCA 197.7A 187.1BC 185.3C - 203.4A 190.4B 189.4BC -

Δ9-THC * 9.3D 20.4C 29.4B +  8.2D 19.6C 37.6A + 

THCVA* 16.92AB 16.29AB 15.02B 16.61AB 16.71AB 18.82A

CBGA 6.66 6.22 7.29 6.44 6.52 7.31

CBCA 1.77 1.89 2.07 2.00 1.92 2.22

CBG * 0.75AB 0.75AB 0.75AB 0.63B 0.81AB 0.94A + 

CBNA * 0.59BC 0.57C 0.71A +  0.58C 0.59C 0.68AB + 

CBDA 0.46 0.57 0.61 0.48 0.58 0.63

CBC * 0.02C 0.57AB 0.57AB +  0.00C 0.46B 0.65A + 

THCV * 0.11AB 0.11AB 0.11AB 0.00B 0.11AB 0.36A + 

CBN 0.02 0.11 0.23 0.00 0.11 0.23

d8-THC 0.00 0.11 0.12 0.00 0.23 0.15

CBDV 0.14 0.00 0.00 0.00 0.00 0.00

CBDVA 0.00 0.11 0.00 0.00 0.00 0.00

CBL 0.00 0.00 0.00 0.11 0.00 0.00

Total * 234.2B 234.7B 242.0AB 238.7AB 238.1AB 258.8A
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Most specific cannabinoids had no significant change 
over time or between storage treatments. The only 
cannabinoids that significant changed during storage 
included THCA, CBG, CBNA, CBC, THCV, and Δ9-
THC. There are a few mechanisms that could explain 
increases in certain cannabinoids. One degradation path-
way includes the oxidation of THC to CBN (Grafström 
et  al. 2019). An increase in Δ9-THC for example, was 
observed for both treatments and contradicts work from 
Lindholst (2010) and Trofin et  al. (2012) who reported 
Δ9-THC levels in dried resin decreased over time, as 
well as Turner et  al. (1973), Fairbairn et  al. (1976), and 
Zamengo et  al. (2019) who all reported decreases at 
various rate ranges dependent on ambient storage tem-
perature and light permanence of the storage container. 
Further, it has been well established that Δ9-THC can be 
synthesized through thermal decarboxylation of THCA 
(Tan et al. 2018; Tahir et al. 2021), and it is noteworthy 
that THCA was the only cannabinoid to decrease in our 
study. We propose that Δ9-THC accumulation in this our 

Table 2  Mean terpenoid and related compound concentrations of cannabis stored in ambient atmosphere or N2 modified 
atmospheric packaging. Means that differ significantly (P < 0.05) after storage or between treatments are marked with an asterisk. 
Those means with different superscript letters are significantly different as determined by Fisher’s least significant difference and 
indicate difference across each row. The Δ column indicates the direction of change between days 18 and 74 when it was significant

Compound (µg/g) Atmospheric Storage N2 MAP Storage

18 days 46 days 74 days Δ 18 days 46 days 74 days Δ

β-Myrcene* 10,004A 8,294AB 6,724B - 10,457A 8,602AB 8,392AB

β-Caryophyllene* 4,230AB 5,749AB 5,124AB 4,198B 5,969A 5,482AB

Limonene* 4,860AB 4,339B 4,239B 5,428A 4,519AB 4,048B -

α-Humulene* 1,439B 1,725B 1,596B 1,443B 1,784B 2,187A + 

Linalool* 1,090B 1,849A 1,275B 1,177B 1,446AB 1,448AB

α-Bisabolol 622 763 623 581 680 701

β-Pinene* 688AB 716AB 610BC 761A 742A 595C -

Fenchol* 383C 514A 446AB +  431BC 503AB 463AB

α-Pinene* 370BC 431AB 361BC 437AB 452A 345C -

α-Terpineol* 312B 419A 409A +  349B 408A 421A + 

trans-Nerolidol* 276C 363B 384A +  290BC 361B 422A + 

Guaiol 146 203 215 178 188 208

Borneol 218 199 155 230 201 158

trans-β-Ocimene* 182AB 150B 154B 238A 187AB 189AB

Fenchone 82 92 398 115 114 69

Caryophyllene oxide* 119B 162A 147AB 123B 151AB 159A + 

Camphene* 105AB 123A 110AB 118AB 122AB 97B -

Terpinolene* 70AB 69AB 39B 92A 92A 46B -

cis-β-Ocimene 25 29 20 29 30 28

Geranyl acetate* 0B 87A 13B 0B 65A 0B

Terpinen-4-ol 0 23 9 0 23 0

Octyl acetate 0 23 9 0 23 0

β-Cedrene* 0C 19A 3C 0C 19A 0C

Total Terpenoids 25,221 26,341 23,063 26,675 26,681 25,458

Table 3  Percent change for each class of aromatic compounds 
between 18 and 74 days after atmospheric or N2 MAP storage. 
Percentages were determined as the total of all individual 
analytes belonging to each classification. The Δ column 
represents N2 Map (%) – Atmospheric (%). All classes had a 
significant change over time, regardless of storage treatment. 
Those classes marked with * represent significant differences 
(p < 0.05) in the Δ between storage treatments

Class Atmospheric (%) N2 MAP (%) Δ

Terpenes −82 −94 −12

  Monoterpenes* −114 −176 −62

  Sesquiterpenes* 32 82 50

Terpenoids 104 97 7

  Monoterpenoids 65 51 −14

  Sesquiterpenoids 39 46 7
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study is due to decarboxylation or oxidation of other can-
nabinoids or compounds.

CBG and THCV are the only cannabinoids to increase 
only under N2 MAP, which may represent a significant 
benefit to MAP in cannabis. CBG has anti-inflamma-
tory and anti-pain characteristics (Nachnani et al. 2020). 
CBG has demonstrated effectiveness as a neuroprotect-
ant to reduce severity of illnesses like Parkinsons disease 
or multiple sclerosis (Granja et al. 2012; Mammana et al. 
2019). Meanwhile, THCV also has neuroprotective prop-
erties (Garcia et  al. 2011) but has shown potential for 
management of obesity and diabetes (Abioye et al. 2020). 
Even though N2 MAP did not change total cannabinoid 
concentration during storage there is value in the accu-
mulation of specific therapeutic compounds.

Failure to observe a significant decrease in levels of 
total terpene contrasts previous research. Bueno et  al. 
(2020) reported a 51.6% decrease in terpenes for flower 
samples of similar terpene content after one month of 
storage. This provides further support for canning as 
a method of cannabis storage to increase retention of 
HVCs, irrespective of the gaseous composition in the 
container headspace.

Much like the cannabinoids, there may be value to 
maintenance or accumulation of specific terpenes and 
terpenoids. Approximately 85% of the terpenes/ter-
penoids in cannabis were comprised of β-myrcene, 
β-caryophyllene, limonene, α-humulene, and linalool, 
which was identical to Bueno et  al. (2020). Of these 
major components, N2 MAP preserved β-myrcene and 
increased α-humulene while it decreased limonene. 
Myrcene is reported to have anti-inflammatory proper-
ties (Surendran et al. 2021), while α-humulene is reported 
to have anti-cancer properties (Chen et  al. 2019). Each 
would also contribute to cannabis’ aroma, so preserva-
tion of these compounds may also maintain the expected 
aroma of fresh cannabis despite storage.

There was an overall trend that monoterpenes 
decreased while sesquiterpenes increased during stor-
age. That trend was accentuated under N2 MAP, where 
cannabis stored under N2 MAP had a greater decrease 
in monoterpenes and increase in sesquiterpenes than 
atmospheric storage. Previous work in cannabis observed 
all terpenes decreasing (Bueno et  al. 2020). However, 
there are examples in other species of terpenes increas-
ing during storage, especially in cool temperatures. For 
example, monoterpenes decreased while sesquiterpe-
nes increased in Citrus junos at −21 °C, 5 °C, and 20 °C 
(Njoroge et  al. 1996). The exact mechanism remains 
unknown with respect to the decrease in monoterpenes 
versus increase in sesquiterpenes. There was no signifi-
cant shift in terpenoids, which again might be due to oxy-
gen limitation from canning.

There were three limitations in our study that could 
perhaps be improved upon in the future. The first limi-
tation is that there is no measurement of HVCs prior 
to storage. This should not devalue the results or con-
clusions, as it is reasonable to assume that there should 
be no differences between storage treatments initially, 
as there would be no time for them to exert any effects. 
However, it makes it impossible to determine the extent 
of HVC preservation from 0 to 18  days. The second 
limitation is that the final storage time for analysis was 
roughly 2.5 months. This was an intentional choice based 
partially on Bueno et al. (2020) who investigated a stor-
age time of 1.5 months, but it does limit us from predict-
ing what other changes may have occurred. For instance, 
it is possible that N2 MAP may have preserved HVCs 
much longer, had we seen decreases in atmospheric stor-
age beyond 2.5  months. The third limitation is a rela-
tively small sample size, which was financially limited. 
However, random error was mitigated through the rand-
omized block design and allowed for detection of signifi-
cant differences with even small relative changes.

Random error was further reduced through the careful 
selection samples in this experiment. Previous research 
has shown that the chemical profile of cannabis will 
vary significantly based on both position and organ tis-
sue (Bernstein et  al. 2019a, Danziger and Bernstein 
2021). Cannabinoid concentration tends to increase with 
height (Bernstein et  al. 2019a; Danziger and Bernstein 
2021). This relationship was strongly correlated with 
intercepted light and strengthened when increasing light 
interception, through pruning or defoliation, caused an 
increase in cannabinoid concentration in lower branches 
(Danziger and Bernstein 2021). Cannabinoid concentra-
tion also tends to be highest in flowers; there is a 50% and 
90% decrease in cannabinoid concentration in inflores-
cent leaves and fan leaves, respectively, when compared 
to flowers (Bernstein et al. 2019a). Harvesting samples of 
equal height and from identical organs greatly decreased 
random error in the experiment and helped identify true 
differences.

Conclusion
Total cannabinoids didn’t change through storage or 
MAP, but there were changes to specific cannabinoids. 
Canned cannabis decreased in THCA during storage, but 
increased in Δ9-THC, CBNA, and CBC. N2 MAP only 
increased concentrations of CBG and THCV compared 
to atmospheric storage. There may be some therapeutic 
benefit to having higher CBG and THCV content, though 
producers would have to determine if it was worth the 
added expense of N2. Total volatile terpene compounds 
also didn’t change through storage or MAP, but there 
was an overall decrease in monoterpenes and increase in 
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sesquiterpenes under N2 MAP. Specifically, N2 MAP pre-
served β-myrcene, increased α-humulene, and decreased 
limonene compared to atmospheric storage.

The fact that volatile terpene compounds and cannabi-
noids didn’t degrade during storage is a novel finding that 
contradicts previous research. From a practical stand-
point it provides reasonable evidence that canning can-
nabis for storage offers significant protection to HVCs, 
though there was no uncanned treatment for compari-
son. Future studies could compare the effectiveness of 
several commercial storage methods for preservation of 
HVCs, which may help standardize storage procedures to 
ensure a high value product.
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