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Cannabis sativa and/or melatonin do not
alter brain lipid but alter oxidative
mechanisms in female rats
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Abstract

Background: Lipid profile and redox status play a role in brain (dys)functions. Cannabinoid and melatonergic
systems operate in the brain and contribute to brain (patho)physiology, but their roles in the modulation of brain
lipid and redox status are not well-known. We studied the effect of ethanol extract of Cannabis sativa (CS) and/or
melatonin (M) on the lipid profile and anti-oxidant system of the rat brain.

Methods: We randomly divided twenty-four (24) female Wistar rats into 4 groups (n = 6 rats each). Group 1
(control) received distilled water mixed with DMSO. Groups II–IV received CS (2 mg/kg), M (4 mg/kg), and co-
administration of CS and M (CS + M) respectively via oral gavage between 8:00 am and 10:00 am once daily for 14
days. Animals underwent 12-h fasting after the last day of treatment and sacrificed under ketamine anesthesia (20
mg/kg; i.m). The brain tissues were excised and homogenized for assay of the concentrations of the total
cholesterol (TC), triacylglycerol (TG), high-density lipoprotein cholesterol (HDL-C), nitric oxide (NO), malondialdehyde
(MDA), and the activities of glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase (GR), glutathione
peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and acetylcholinesterase (AChE). One-way analysis of
variance (ANOVA) was used to compare means across groups, followed by the least significant difference (LSD)
post-hoc test.

Results: CS and/or M did not affect the lipid profile parameters. However, CS increased the G6PD (from 15.58 ±
1.09 to 21.02 ± 1.45 U/L; p = 0.047), GPx (from 10.47 ± 0.86 to 17.71 ± 1.04 U/L; p = 0.019), and SOD (from 0.81 ±
0.02 to 0.90 ± 0.01 μM; p = 0.007), but decreased NO (from 9.40 ± 0.51 to 6.75 ± 0.21 μM; p = 0.010) and had no
effect on MDA (p = 0.905), CAT (p = 0.831), GR (p = 0.639), and AChE (p = 0.571) in comparison with the control
group. M augmented the increase in G6PD (from 21.02 ± 1.45 U/L to 27.18 ± 1.81 U/L; p = 0.032) and decrease in
NO (from 6.75 ± 0.21 to 4.86 ± 0.13 μM; p = 0.034) but abolished the increase in GPx (from 17.71 ± 1.04 to 8.59 ±
2.06 U/L; p = 0.006) and SOD (from 0.90 ± 0.01 to 0.70 ± 0.00 μM; p = 0.000) elicited by CS in the rat brain in
comparison with the CS group.
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Conclusions: CS and M do not alter brain lipid profile. Our data support the contention that CS elicits an anti-
oxidative effect on the brain tissue and that CS + M elicits a pro-oxidant effect in rat brain.
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Introduction
The brain tissue is vulnerable to oxidative damage due
to its richness in polyunsaturated fatty acids (PUFAs),
presence of redox-active metals like Fe2+ and Cu2+, and
high oxygen consumption rate. Unfortunately, the brain
has limited antioxidant mechanisms compared to other
organs (Floyd, 1999). Thus, brain oxidative stress con-
tributes to the pathogenesis of various neurodegenera-
tive disorders. In fact, epileptogenic agents, including
Pilocarpine and pentylenetetrazole, have been shown to
cause elevated reactive oxygen species (ROS) in the
brain of rats (Freitas, 2009). Neural tissues or sera from
amyotrophic lateral sclerosis (ALS) patients and trans-
genic mice expressing mutant SOD1 have been reported
to exhibit increased deoxyribonucleic acid (DNA) dam-
age and lipid peroxidation (Simpson et al., 2004).
The effects of cannabinoids (CBs) on the lipid metab-

olism and redox system in the brain have been reported
but not well understood. For instance, tetrahydrocanna-
binol (THC)-enriched Cannabis sativa (CS) extract ex-
acerbates epileptic seizures and increased ROS and
lipids induced by pentylenetetrazole in rat brain (Abdel-
Salam et al., 2018). Melatonin (N-acetyl-5-methoxytryp-
tamine, M) is a ubiquitous bioactive molecule that is se-
creted by the pineal and other organs in mammals
(Acuña-Castroviejo et al., 2014) and is present in bac-
teria, fungi, animals, and plants (Cipolla-Neto et al.,
2014). Aside from maintaining circadian rhythms, M
also performs antioxidant (Reiter et al., 2018), anti-
apoptotic (Amin et al., 2015), anti-inflammatory (Harde-
land, 2018), analgesic (Yang et al., 2018), and anti-cancer
(Reiter et al., 2017) functions. Interestingly, M also has a
neuroprotective effect in cases of ischemic stroke and
traumatic brain injury (Zhao et al., 2018) and beneficial
effects on several central nervous system (CNS) disor-
ders including Alzheimer’s disease (Corpas et al., 2018)
and cognitive impairments (Song et al., 2014). Several
mechanisms for the neuroprotective effect of M have
been proposed, some of which include antioxidant (Tan
et al., 2015), anti-apoptosis (El-Missiry et al., 2014), im-
provement of mitochondrial functioning (Tan et al.,
2016), and antagonism of brain insulin resistance (Xu
et al., 2019).
The crosstalk between CB-melatonergic systems has

been well-established. In the testis, for instance, we have
extensively shown that M exacerbates CB-induced gona-
dotoxicity in-vivo but ameliorates it in-vitro (Alagbonsi
& Olayaki, 2018; Alagbonsi & Olayaki, 2017; Alagbonsi

et al., 2016; Alagbonsi & Olayaki, 2016). Cannabinoid re-
ceptors (CBRs), especially the subtype 1, are predomin-
antly expressed in the CNS (Svizenska et al., 2008)
where they regulate synaptic functions, memory, and
motor learning (Pacher et al., 2006). The CBs, including
THC, cannabidiol, and cannabinol, have been shown to
attenuate the norepinephrine-induced stimulation of M
biosynthesis in the rat pineal gland by reducing arylalky-
lamine N-acetyltransferase (AANAT) activity, even
though this effect is not mediated by CBRs 1 and 2
(Koch et al., 2006). It was further shown that the CB-
dependent attenuation of M biosynthesis and AANAT
activity is mediated by an intracellular interaction be-
tween CBs and the activated AANAT enzyme (Koch
et al., 2006).
Development of epileptic seizures and brain tissue

lipid peroxidation are ameliorated by antioxidants like
vitamin C (Ayyildiz et al., 2007), resveratrol (Mishra
et al., 2015), β-caryophyllene (de Oliveira et al., 2016),
and quercetin (Sefil et al., 2014). Cognition impairment
in high-fat diet (HFD)-fed aged rats was alleviated by
through antagonism of brain insulin resistance (Xu
et al., 2019). The CBs and M are also endogenously pro-
duced in mammals and other animals. Since lipid profile
and redox status have been reported to modulate brain
physiology and pathophysiology, and the CBs and mela-
tonergic systems are predominant in the brain, there is a
possibility that these systems could have synergistic,
additive, or even antagonistic effects on the brain lipid
and anti-oxidant profile. Presently, there is no clear in-
formation about the effect of co-administration of CS
and M on brain lipid and redox system.
Dim light M onset, a highly utilized marker of circa-

dian rhythm that represents the time at which M level
begins to rise, has been reported to occur significantly
earlier in women than in men (Van Reen et al., 2013).
Using constant routine protocols in humans, females
have also been reported to exhibit greater level of plasma
M than males (Gunn et al., 2016). In a study that investi-
gated the regulation of cognition by circadian rhythm
and sleep-wake cycle, it was reported that the amplitude
of circadian modulation is higher in women than in men
(Santhi et al., 2016). In addition, studies have reported
that women show higher CBR1 protein expression
(Onaivi et al., 1999) and are more susceptible to CB-
induced visuospatial memory impairment and
hemodynamic changes than men (Mathew et al., 2003).
Female rats also demonstrate higher acquisition,
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maintenance, response, locomotor, anti-nociceptive, and
cataleptic effects than male rats after administration of
CBs (Tseng & Craft, 2004) while administration of CBs
are also more acquired, maintained. These established
gender difference in the effect of CS and M informed
our choice of female rats.
In this study, we studied the effect of CS and/or M on

the lipid profile and anti-oxidant system in the female
rats’ brain. We hypothesized that CS will alter the brain
lipid and redox status, which will be ameliorated by M.

Materials and methods
Animal care
We obtained twenty-four (24) adult female Wistar rats
(150–170 g) from the Department of Biochemistry, Uni-
versity of Ilorin, Nigeria and housed them in plastic
cages under the condition of uniform humidity (65%)
and temperature (22–25 °C) on a 12-h light-dark cycle.
They were fed with a standard rodent pelletized diet
(Ace Feeds, Ibadan, Nigeria) with free access to distilled
water ad libitum, and were exposed to a 7-day
acclimatization period before the commencement of the
treatments. In addition to the care of the animals ac-
cording to the National Academy of Science guidelines,
USA (Albus, 2012), the study protocol was approved by
the University of Ilorin Ethical Research Committee with
clearance code: UERC/ASN/2018/1152.

Extraction of CS leaves
The dried leaves of CS, sourced from Uzeba village in
Edo State, Nigeria, were kindly donated by the National
Drug Law Enforcement Agency (NDLEA), Ilorin office,
Kwara State, Nigeria for research purpose only. The
leaves were ground into a powder with a manual mortar
and pestle (700 g obtained). The pulverized product was
divided into two parts; one part was used for extraction
and chromatographic analysis while the other part was
used for proximate analysis and phytochemical studies
respectively. Extraction of CS was done with Soxhlet ap-
paratus by soaking 300 g in 98% ethanol for 8 hours as
previously described (Mandal & Das, 2010). It was fil-
tered and a rotary evaporator was then used to evaporate
the filtrate to dryness (dried filtrate weighed 45.2 g and
its percentage yield was 15.1%).

Experimental design
Determination of the lethal dose that kills 50% of the
treated animals (LD50) was done as previously described
(Yassa et al., 2010) and one-tenth (1/10th) of the LD50
was calculated to be 2 mg/kg, which was considered as
the experimental dose. Based on an established animal
sampling method (Charan & Kantharia, 2013), the rats
were randomly divided in a blinded fashion into 4
groups (n = 6 rats each). Stock solutions of the CS and

M were prepared with dimethyl sulphoxide (DMSO),
which served as the vehicle for their oral administration.
The solutions were stored at 20 °C and diluted to the re-
quired concentration to achieve the needed dose for
each animal. Group 1 received control mixture (distilled
water mixed with DMSO, making 0.2% DMSO, vol/vol)
and served as the control. Groups II–IV received an
ethanol extract of Cannabis sativa (CS, 2 mg/kg); 4 mg/
kg M (Bulk Supplements, Henderson, Nevada, USA);
and co-administration of CS and M (CS + M) via oral
gavage between 8:00 am and 10:00 am once daily for 14
days. In our preliminary experiment to confirm the ef-
fect of control mixture, we assayed the parameters re-
ported herein in the brain of rats that did not receive
the control mixture but only distilled water in addition
to standard diet for the same duration of 14 days. We
compared the data of these animals with those of the
control that received the control mixture using the T
test and found that the control mixture had no statistical
significance on the parameters assessed in this study.
Animals underwent 12-h fasting after the last day of

treatment and sacrificed under ketamine anesthesia (20
mg/kg; i.m). The brain tissues were excised, rinsed with
normal saline, and homogenized with a mechanized
homogenizer in 30 % chilled sucrose (1:4 ratio w/v); cen-
trifuged at 4000 rpm for 15 min to sediment nuclei and
cell debris, and the resulting supernatants were collected
in plain bottles and stored at − 20 °C before biochemical
analyses.

Biochemical parameters
Brain homogenates were used to determine the concen-
trations of the total cholesterol (TC), triglyceride (TG),
high-density lipoprotein-cholesterol (HDL-C) (Rich-
mond, 1976), nitric oxide (NO) (Guevara et al., 1998),
malondialdehyde (MDA) (Ohkawa et al., 1979), and the
activities of glucose-6-phosphate dehydrogenase (G6PD)
(Lohr & Waller, 1974), glutathione reductase (GR)
(Cribb et al., 1989), glutathione peroxidase (GPx) (Ple-
ban et al., 1982), catalase (CAT) (Claiborne, 1985), SOD
(Kakkar et al., 1984), and ACh (Ellman et al., 1961). TC,
TG, and HDL-C levels were assessed using Labkit® diag-
nostic kit reagents as described by the manufacturer.
Thereafter, very low-density lipoprotein-cholesterol
(VLDL-C) was estimated as one-fifth of TG and low-
density lipoproteins-cholesterol (LDL-C) was calculated
using Friedward formula: [LDL-C = TC – (HDL-C +
VLDL) mg/dl]. Additionally, the following lipid indices
were estimated thus: cardiovascular risk ratio (CRR):
CRRI = TC/HDL-C ratio, CRRII = LDL-C/HDL-C ratio;
Non-HDL-C = TC-HDL-C (measures all lipoprotein
containing cholesterol), atherogenic coefficient (AC) =
non-HDL-C/HDL-C ratio (measures the risk of coronary
artery disease); and atherogenic index of plasma (AIP) =
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log TG/HDL-C (Dobiášová, 2004). AIP is a novel index
that has been used as an optimal indicator of dyslipid-
emia and associated conditions (Zhao et al., 2017).
Information about the assay methods, manufacturers,

product codes, and products’ sensitivity and specificity
are summarized in Table 1.

Statistical analysis
Data from all the animals in each group were used for
statistical analysis and were represented as Mean ± SEM
after analysis with version 20 of Statistical Package for
Social Sciences (SPSS) (IBM Corporation, Armonk, NY).
One-way analysis of variance (ANOVA) was used to
compare means across groups (unless where otherwise
stated), followed by the least significant difference (LSD)
post-hoc test. p ≤ 0.05 was considered as statistically
significant.

Results
Proximate and phytochemical screening of CS
Results of the proximate analysis, phytochemical screen-
ing, and chromatographic examination of CS are pre-
sented in the supplementary data (Alagbonsi et al. 2019).

Effect of CS and/or M on lipid profiles and indices in
brain
The CS and/or M did not affect the TG (Fig. 1A), TC
(Fig. 1B), HDL (Fig. 1C), LDL (Fig. 1D), non-HDL (Fig.
1E), CRRI (Fig. 1F), CRRII (Fig. 1G), AC (Fig. 1H), and
AIR (Fig. 1I) of rats’ brains as their omnibus ANOVA
results were insignificant (p > 0.05). These showed that

CS and M do not have effect of rats’ brain lipid profile
either when administered separately or when combined.

Effect of CS and/or M on the pro-oxidant-antioxidant
system in the brain
The omnibus ANOVA result of the G6PD was signifi-
cant (p = 0.007). Furthermore, the post-hoc test for mul-
tiple comparisons showed that the G6PD was
significantly increased in the brain of rats that received
CS (21.02 ± 1.45 U/L; p = 0.047), M (28.86 ± 0.86 U/L;
p = 0.002), and CS + M (27.18 ± 1.81 U/L; p = 0.004)
when compared to control group (15.58 ± 1.09 U/L).
Moreover, CS + M caused more increase in the brain
G6PD than CS only (p = 0.032) (Fig. 2A).
The omnibus ANOVA result of the GPx was signifi-

cant (p = 0.021). Furthermore, the post-hoc test for mul-
tiple comparisons showed that the GPx was significantly
increased by CS (17.71 ± 1.04 U/100 mg tissue; p =
0.019) but unaffected by M (8.55 ± 3.38 U/100 mg tis-
sue; p = 0.494), while the CS-induced increase in GPx
was abolished by M (8.59 ± 2.06 U/100 mg tissue; p =
0.455) when compared to control (10.47 ± 0.86 U/100
mg tissue) (Fig. 2B).
The omnibus ANOVA result of the SOD was signifi-

cant (p = 0.000). Furthermore, the post-hoc test for mul-
tiple comparisons showed that the SOD was significantly
increased by CS (0.90 ± 0.01 U/100 mg tissue; p = 0.007)
but decreased by M (0.45 ± 0.01 U/100 mg tissue; p =
0.000) and CS + M (0.70 ± 0.00 U/100 mg tissue; p =
0.002) when compared to control (0.81 ± 0.02 U/100 mg
tissue) (Fig. 2C).

Table 1 Product information on biochemical assays

Parameter Methods Manufacturers Product
code

Sensitivity

1 TC (mg/100 mg tissue) Enzymatic colorimetric test Fortress Diagnostics, Antrim, Northern Ireland, UK BXC0261 0.20 mmol/l (7.74
mg/dl)

2 TG
(mg/100 mg tissue)

Enzymatic colorimetric test Fortress Diagnostics, Antrim, Northern Ireland, UK BXC0271 0.05 mmol/l (3
mg/dl)

3 HDL (mg/100 mg tissue) Enzymatic colorimetric test Fortress Diagnostics, Antrim, Northern Ireland, UK BXC0421 0.02 mmol/l (0.9
mg/dl)

4 G6PD (U/L) UV/enzymatic Spectrum Diagnostics, Egyptian Company for
Biotechnology, Cairo, Egypt

REF:372002 19.5 U/g Hb

5 NO (μM) Colorimetric Elabscience Houston, Texas, USA E-BC-K035-S 0.16 μmol/L

6 MDA (μM) Colorimetric TBARS
microplate Assay

Oxford Biomedical Research, Rochester Hills, MI, USA FR40.130619 1 μm

7 GR (U/L) Colorimetric Abcam, Cambridge, UK Ab83461 0.1 mU/ml

8 GPx (U/L) UV/enzymatic Fortress Diagnostics, Northern Ireland, UK BXC0551 0.1 mU/ml

9 CAT (U/L) Colorimetric Mybiosource, Sunny Southern California, San Diego,
USA.

MBS726781 0.1 ng/ml

10 SOD (μM) Colorimetric Mybiosource Sunny Southern California, San Diego,
USA.

MBS2707324 0.067 ng/ml

11 AChE (μmolAcSCH/min/
mg protein)

Colorimetric Abcam, Cambridge, UK Ab138871 1 mU/ml
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The omnibus ANOVA result of the NO was signifi-
cant (p = 0.007). Furthermore, the post-hoc test for mul-
tiple comparisons showed that the NO was significantly
reduced in the brain of rats that received CS (6.75 ±
0.21 μM; p = 0.010), M (6.57 ± 0.93 μM; p = 0.011), and
CS + M (4.86 ± 0.13 μM; p = 0.001) when compared to
control (9.40 ± 0.51 μM). Moreover, CS + M caused
more decrease in the brain NO than CS only (p = 0.034)
(Fig. 2D).
The CS and/or M did not affect the MDA (Fig. 2E),

CAT (Fig. 2F), GR (Fig. 2G), and AChE (Fig. 2H) of rats’
brains, as their omnibus ANOVA results were not sig-
nificant (p > 0.05).

Discussion
Since cholesterol is not transported from the plasma into
the brain through the blood-brain barrier, most of the
cholesterols in the brain (over 95%) are produced from
de novo synthesis in the glia (astrocytes), neurons, and
oligodendrocytes (Dietschy, 2009). The synthesized chol-
esterol will then be internalized in the endosome/lyso-
some system after its secretion via transport molecules
and uptake by neurons’ lipoprotein receptors. Conse-
quently, Niemann-Pick C1 protein will transport it to
the mitochondria where there will be a synthesis of neu-
rosteroids (e.g., allopregnanolone and dehydroepiandros-
terone) via pregnenolone. The NMDA/GABAA and
nuclear receptors are acted upon by neurosteroids to
promote neurogenesis (the process by which nervous
system cells are formed from neural stem cells) and
modulate neurotransmission (Sayeed et al., 2006). Some
indices of atherogenic dyslipidemia like high TG/HDL
cholesterol were reported to be positively associated with
the prevalence of silent brain infarct in a neurologically-
healthy population (Nam et al., 2019), indicating harmful
small/dense LDL that could contribute to cerebrovascu-
lar diseases (Bittner et al., 2009). Based on the convin-
cing links between the lipid metabolism and brain
(dys)functions, we estimated the profile of lipoproteins
and ratios in the brain homogenate of rats administered
with CS and/or M. We observed that the CS and M nei-
ther affected the lipoprotein cholesterols nor their calcu-
lated ratios in the rat brain either when administered
separately or when co-administered.

Fig. 1 CS and M do not alter brain lipid either when administered
separately or when co-administered in female rats. A–I represent TG,
triglyceride; TC, total cholesterol; HDL, high-density lipoprotein; LDL,
low-density lipoprotein; non-HDL, non- high density lipoprotein;
CRRI, cardiovascular risk ratio I; CRRII, cardiovascular risk ratio II; AC,
atherogenic coefficient; and AIR, atherogenic index ratio respectively.
CS, ethanol extract of Cannabis sativa; M, melatonin; -, not
administered; +, administered
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Fig. 2 (See legend on next page.)

Abdulrahim et al. Journal of Cannabis Research            (2021) 3:38 Page 6 of 10



Oxidative (and nitrosative) stress is a common feature
of acute or chronic neurodegenerative diseases like Alz-
heimer’s disease, multiple sclerosis, Parkinson’s disease,
and amyotrophic lateral sclerosis (Pacher et al., 2007).
Oxidative stress also provides a key link between envir-
onmental factors (e.g., heavy metals, pesticides, and her-
bicides) with genetic risk and endogenous factors in the
pathogenic mechanisms of neurodegeneration. Disrup-
tion of the blood-brain barrier’s integrity and reactive
changes in the glial elements in the CNS, which facili-
tates the penetration of inflammatory cells and various
toxins to the site of brain injury and leads to irreversible
degeneration, are caused by oxidative or nitrosative
stress (Pacher et al., 2007). Moreover, various forms of
acute (e.g., stroke, traumatic brain injury, and epilepsy)
or chronic (e.g., Alzheimer’s disease, multiple sclerosis,
Huntington’s disease, Parkinson’s disease, HIV-
associated dementia, etc.) neurodegenerative disorders
are caused by dysregulation of the endocannabinoid sys-
tem (Bisogno & Di Marzo, 2010), as reflected by the in-
crease or decrease in endocannabinoid content or
altered CBRs expression in diseased animal or human
tissues. Interestingly, the neuroprotective potentials of
plant-derived cannabinoids in the CNS have been estab-
lished (Pope et al., 2010), and the neuroprotection is me-
diated via their antioxidant property, among others
(Pacher & Haskó, 2008).
In the present study, we observed that the CS in-

creased G6PD, GPx, and SOD, but decreased NO and
had no effect on MDA, CAT, GR, and AChE. Our data
support the contention that CS elicits an anti-oxidative
effect on the brain tissue. To understand the effect of
cannabinoid-melatonergic systems interaction on the
redox status of the brain, we estimated some redox pa-
rameters in the brain of rats treated with CS + M. We
observed that M increased G6PD but reduced GPx,
SOD, and NO in the brain of CS-treated rats. In this
context, M augmented the increase in G6PD and de-
crease in NO but abolished the increase in GPx and
SOD elicited by CS in the rat brain. This suggests that
the redox effect of M in the brain of CS-treated rats is
substrate-specific, which could either lead to the pro- or
anti-oxidant condition. We also speculate that the in-
crease in the G6PD (which is a second line anti-oxidant)
in the brain of rats that received CS + M was a reactive
response to the depletion in the first-line anti-oxidants
(SOD and GPx). However, the exacerbation of CS-

induced reduction of NO by M despite the pro-oxidant
effect of their combination cannot be convincingly ex-
plained in this study and needs further attention.
The SOD, a ubiquitous metal-containing enzyme, con-

verts superoxide anion into O2 and H2O2 (Çimen, 2008).
The GPx is an enzyme family with peroxidase that pro-
tects organisms from oxidative damage by reducing lipid
hydroperoxides to their corresponding alcohols and free
hydrogen peroxide to water (Muthukumar et al., 2011).
Reduced glutathione (GSH), which is a tripeptide mol-
ecule that consists of L-glutamate, L-cysteine, and L-gly-
cine, is the most important antioxidant and free radical
scavenger in the brain. In the presence of GPx, the GSH
is oxidized (via removal of hydrogen) by hydrogen per-
oxide to form oxidized glutathione disulfide (GSSG),
which can also be converted back to GSH by glutathione
reductase (Bhabak & Mugesh, 2010). Therefore, the ratio
of reduced (GSH)/oxidized (GSSH) determines the
redox state of cells (Wu et al., 2004). Our observation of
an increase in the brain SOD and GPx in this study and
the previously reported increase in the brain GSH
(Abdel-Salam et al., 2018) in rats suggest an anti-
oxidative potential of both the ethanol and chloroform
extracts of CS respectively.
Pathological changes in the brain cause a rapid alter-

ation in the morphology and phagocytes behavior of
microglial cells, leading to an increase in their cytotoxic
responses characterized by secretion of NO, proteases,
and cytokines such as tumor necrosis factor-alpha
(TNF-α) and IL-1β. An increase in neuronal NO has
been implicated in the endoplasmic reticulum stress and
peroxynitrite-mediated oxidative/nitrosative damage
(Zhu et al., 2017). Our observation of a decrease in NO
without a change in MDA contrasts the previously re-
ported increase in the MDA but unchanged NO in the
brain of pentylenetetrazole-treated rats (Abdel-Salam
et al., 2018). While their study suggested that CS causes
lipid peroxidation even when GSH increases, our present
study suggests that CS reduces nitrosative stress by re-
ducing NO. The reduction in NO and the corresponding
increase in antioxidant enzymes (e.g., G6PD, GPx, and
SOD) by CS observed in our study might be responsible
for the absence of lipid peroxidation (evident from the
unchanged level of MDA) in CS-treated rats. These cor-
roborate the contention that CS is neuroprotective espe-
cially by enhancing antioxidants and suppressing
oxidative and nitrosative stresses.

(See figure on previous page.)
Fig. 2 M augments CS-induced increase in G6PD and decrease in NO but abolishes the CS-induced increase in GPx and SOD. A–H represent
G6PD, glucose-6-phosphate dehydrogenase; GPx, glutathione peroxidase; SOD, superoxide dismutase; NO, nitric oxide; MDA, malondialdehyde;
CAT, catalase; GR, glutathione reductase; and AChE, acetylcholinesterase respectively. *p < 0.05 vs. control; #p < 0.05 vs. CS; CS, ethanol extract of
Cannabis sativa; M, melatonin; -, not administered; +, administered
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Conclusions
This study showed that CS and M do not alter brain
lipid either when administered separately or when co-
administered. Moreover, CS increases the anti-oxidant
system while CS + M elevates the oxidative mechanism
in the rat brain. This study has several limitations. First,
we were not able to know the contributions of the CBRs
and melatonin receptors (MTs) in the effect of CS-M
interaction on antioxidant status. Second, we did not use
different doses of M to determine whether its effect is
dose-dependent in the CS-treated rat brain. However,
the study’s clinical significance lies in the observation
that the interaction of the cannabinoid and melatonergic
systems could alter redox system. A similar study should
be conducted in human so as to further our understating
and advance the possible exploration of the
cannabinoid-melatonergic systems in the brain.
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