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Abstract

Background: Widespread commercialization of cannabis has led to the introduction of brand names based on
users’ subjective experience of psychological effects and flavors, but this process has occurred in the absence of
agreed standards. The objective of this work was to leverage information extracted from large databases to
evaluate the consistency and validity of these subjective reports, and to determine their correlation with the
reported cultivars and with estimates of their chemical composition (delta-9-THC, CBD, terpenes).

Methods: We analyzed a large publicly available dataset extracted from Leafly.com where users freely reported
their experiences with cannabis cultivars, including different subjective effects and flavour associations. This analysis
was complemented with information on the chemical composition of a subset of the cultivars extracted from
Psilabs.org. The structure of this dataset was investigated using network analysis applied to the pairwise similarities
between reported subjective effects and/or chemical compositions. Random forest classifiers were used to evaluate
whether reports of flavours and subjective effects could identify the labelled species cultivar. We applied Natural
Language Processing (NLP) tools to free narratives written by the users to validate the subjective effect and flavour
tags. Finally, we explored the relationship between terpenoid content, cannabinoid composition and subjective
reports in a subset of the cultivars.

Results: Machine learning classifiers distinguished between species tags given by “Cannabis sativa” and “Cannabis
indica” based on the reported flavours: <AUC> = 0.828 ± 0.002 (p < 0.001); and effects: <AUC> = 0.9965 ± 0.0002 (p <
0.001). A significant relationship between terpene and cannabinoid content was suggested by positive correlations
between subjective effect and flavour tags (p < 0.05, False-Discovery-rate (FDR)-corrected); these correlations
clustered the reported effects into three groups that represented unpleasant, stimulant and soothing effects. The
use of predefined tags was validated by applying latent semantic analysis tools to unstructured written reviews, also
providing breed-specific topics consistent with their purported subjective effects. Terpene profiles matched the
perceptual characterizations made by the users, particularly for the terpene-flavours graph (Q = 0.324).
(Continued on next page)
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(Continued from previous page)

Conclusions: Our work represents the first data-driven synthesis of self-reported and chemical information in a
large number of cannabis cultivars. Since terpene content is robustly inherited and less influenced by
environmental factors, flavour perception could represent a reliable marker to indirectly characterize the
psychoactive effects of cannabis. Our novel methodology helps meet demands for reliable cultivar characterization
in the context of an ever-growing market for medicinal and recreational cannabis.
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Background
Cannabis plants have been used for millennia around
the world, (Mechoulam 2019; Russo 2011; Russo et al.
2008). Historically, they had been classified into two sep-
arate species (Indica and Sativa s.p.) presenting different
botanical characteristics, such as height, leaf width, and
others (Bonini et al. 2018; Lamarck 1785). While some
contemporary authors have supported this
categorization via chemical analysis (Hillig 2004; Hillig
and Mahlberg 2004), the most accepted position is the
elimination of this classification (Piomelli and Russo
2016).
In recent times, the commercialization of cannabis has

increased dramatically, leading to the appearance of sev-
eral commercial cultivars in the absence of agreed stan-
dards. It is important to note that these “recreational
users” (as opposed to medical users) sometimes also seek
therapeutic effects when consuming the plant. This ap-
plies not only to cannabis users but also to those of lav-
ender, yerba mate, coffee, ginger roots or any other
plants which are used with certain expected therapeutic
effects (e.g. soothing, stimulant, etc.) beyond their
aromas and flavours.
Market growth for cannabis has been dramatic in

some countries; for instance, in the United States sales
reached $6.7 billion in 2016, with 30% growth year-over-
year, representing the second largest cash crop, with
total worth over $40 billion (Adams 2019; Robinson
2017). These sudden changes created novel problems for
users, as cannabis cultivators transition towards legal
business models, yet without a world-wide standard for
their products. Moreover, “species” (e.g. “indica”,
“sativa”) and “cultivar names” might not be representa-
tive of the underlying chemovar, yet these categories are
still frequently used in commercial contexts in spite of
their doubtful botanic validity (Jikomes and Zoorob
2018; Piomelli and Russo 2016), this presents a problem
for users who cannot rely on the provided name to guar-
antee the desired effect. Cannabis dispensaries offer dry
cannabis flowers or buds (Gilbert and DiVerdi 2018), ex-
tracts and essential oils (Permanente and Care 2008) and
various edibles (Weedmaps n.d.); however, since in most
countries these products remain illegal, there are no
international agreements to regulate their quality or

chemical content. To fulfill this contemporary demand,
websites and commercial repositories (such as Leafly.
com) have begun to gather a large number of user re-
ports. However, comprehensive analyses of the validity
of these reports and their correlation with chemical
composition of the consumed plants are still lacking.
Understanding the relationship between user reports

and the chemical composition of cannabis is very rele-
vant, since the development of standards could be fur-
ther complicated by the heterogeneous composition of
the plants. Cannabis contains over 400 compounds, in-
cluding more than 60 cannabinoids, the main active
molecules being tetrahydrocannabinol (delta-9-THC)
and cannabidiol (CBD) (Pollastro et al. 2018). These two
cannabinoids were often considered the only chemicals
involved in the medicinal properties and psychoactive ef-
fects associated with cannabis, and remain the only ones
screened when evaluating cultivar chemotypes (De Mei-
jer et al. 2009; Fetterman et al. 1971; Hazekamp et al.
2016; Nie et al. 2019; UNODC 1968). However, increas-
ing evidence supports the relevance of terpenes and ter-
penoids, molecules responsible for the flavour and scent
of the plants, both as synergetic to cannabinoids and as
active compounds by themselves (Henry 2017; Hillig
2004; Nuutinen 2018; Russo 2011). Flavours have pre-
dictive value at cultivar level (Gilbert and DiVerdi 2018)
that may be complementary to the quantification of
THC and CBD content (Jikomes and Zoorob 2018). Ter-
penes are widely used as biochemical markers in chemo-
systematics studies to characterize plant samples due to
the fact that they are under strong genetic control and
relatively unaffected by environmental factors (Aiz-
purua-Olaizola et al. 2016; Casano et al. 2011; Hillig
2004). Cannabinoid content, on the other hand, can vary
greatly among generations of the same strain, and also
due to the sex, age and part of the plant (Fetterman
et al. 1971; Hazekamp et al. 2016).
In this work, we combined different sources of data

for the characterization of commercial cannabis culti-
vars, linking both self-reports of psychoactive effects and
flavour profiles with information obtained from experi-
mental assays of cannabinoid and terpene content. Our
analysis comprised 887 different cultivars and was based
on a large sample (> 100.000) of user reviews publicly
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available at the website Leafly (www.leafly.com). The re-
ports contained unstructured written reviews of experi-
ences for each commercial strain, as well as structured
tags indicating flavour profiles and subjective effects. As
for cultivar categorization, we used the “indica“, “sativa
“and “hybrid “labels, since they were the ones provided
in the Leafly dataset.
We explored the following four hypotheses: 1) super-

vised and unsupervised machine learning algorithms can
group cultivars into clusters of similar breeds based on
subjective effect tags, but also based on flavour profile
tags, 2) certain pairs of effect and flavour tags are corre-
lated across cultivars, implying potential association be-
tween terpene and cannabinoid content 3) unstructured
written reports contain information consistent with the
tags, and the detection of recurrent topics in the reports
matches the known effects and uses of different cannabis
breeds, and 4) terpene and cannabinoid profiles are con-
sistent with the perceptual characterizations made by the
users. In particular, since terpene content is a major factor
influencing cannabis scent and flavor, we expect a signifi-
cant correlation of terpene profile with tags. We stress
that our work does not include data specific pathological
treatments (e.g. epilepsy, melanoma, multiple sclerosis,
etc. [Bonini et al. 2018]), and focused only on a large sam-
ple of recreational users of commercial cannabis.

Methods
User reported data
Data corresponding to > 1.200 cannabis cultivars was
accessed and downloaded from Leafly (www.leafly.com)
(August 2018). Leafly is presently the largest cannabis
website in the world wide web, allowing users to rate
and review different cultivars of cannabis and their dis-
pensaries. Sets of predefined tags could be used to rate
subjective effects (e.g. “aroused”, “creative”, “euphoric”,
“relaxed”, “paranoid”). Here, subjective effects stand for
those effects that impact primarily on subjective experi-
ence, and are determined by the direct reports made by
the users. Flavours (e.g. “apple”, “coffee”, “flowery”, “apri-
cot”, “vanilla”) are assigned to cultivars via crowdsour-
cing, together with a large number (> 100.000) of
unstructured written reviews.
Cultivars with less than 10 reviews were discarded

(Martial et al. 2019; Sanz and Tagliazucchi 2018; Zam-
berlan et al. 2018), resulting in 887 cultivars included in
this study. We also verified that single user reports per
“strain” represented less than 20% of the total reports in
99% of the data and performed extensive user/report
statistical descriptions (Supplementary Table 1) Each
cultivar was arbitrary classified by Leafly users as
“indica“, “sativa “or “hybrid“. Users associate cultivars
with tags indicating flavours (48 different tags) and ef-
fects (19 different tags).

It should be noted that biases can appear in crowd-
sourced data when a large proportion of the reports
comes from a small group of users, hence violating the
independence assumption. We studied this possibility by
computing and visualizing the cumulative histogram of
reports per subject per cultivar (see supplementary
Fig. 1). Only 10% of the studied cultivars presented more
than 10% of their reports given by a single user, which
represents one order of magnitude of difference between
the total dataset size and the potentially non-
independent data. Moreover, this was reduced to only
0.6% of varieties with more than 20% reports by a single
user, which suggests that subject identity impacts a very
reduced sample of the dataset. Details on all included
cultivars, flavour and effect tags are presented in Table 1
and in additional information [see Additional file 1].

Effect and flavour tags
Given a cultivar s with n reviews, we considered for the
i-th review the vectors Ei ¼ ðei1;…; ei19Þ and Fi ¼ ð f i1;…;

f i48Þ, where eij ¼ 1 if the tag for the j-th effect appeared

in the i-th review, and eij ¼ 0 otherwise. The f ij were de-

fined analogously, but based on the flavour tags. Next,
the cultivar was identified with the vectors EðsÞ ¼ 1

nPn
i¼1Ei ¼ 1

n

Pn
i¼1ðei1;…; ei19Þ and FðsÞ ¼ 1

n

Pn
i¼1 Fi ¼ 1

nPn
i¼1ð f i1;…; f i48Þ , representing the probability that each

subjective effect and flavour tag was used in the descrip-
tion of the corresponding “strain“.

Network and modularity analysis
Given two cultivars s1 and s2, they were represented in
the effect / flavour network by nodes linked with a con-
nection weighted by the value of the non-parametric
Spearman correlation between vectors E(s1) and E(s2) /
F(s1) and F(s2), respectively. To find sub-networks with
dense internal connections and sparse external connec-
tions (i.e. modules), the Louvain agglomerative algorithm
(Blondel et al. 2008) was applied to maximize Newman’s
modularity using a resolution parameter γ = 1 .
To visualize the resulting networks, we used the For-

ceAtlas 2 layout included in Gephi (Bastian et al. 2009)
(https://gephi.org/). ForceAtlas 2 represents the network
in two dimensions, modeling the link weights (i.e. Spear-
man correlations) as springs, and the nodes as point
charges of the same sign. The attraction is then com-
puted using Hooke’s law (Hooke 1678) and the repulsion
using Coulomb’s law (Coulomb 1785). A detailed ex-
planation can be found in the additional file 1, section 2.

Effect-flavour correlation analysis
For all cultivars, the effect and flavour frequency vectors
can be summarized as matrices Eis and Fis of size 887 ×
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19 and 887 × 48, respectively, indicating the probability
of observing the i-th effect / flavour tag in cultivar s. To
investigate associations between subjective effect and fla-
vour tags, we computed all 19 × 48 = 912 non-
parametric Spearman correlations between all possible

pairs of columns from Ê and F̂ . We follow the notation

where Â refers to a matrix and Aij to a particular matrix
entry. Since some effect and flavour tags appeared very
sparsely, we only considered pairs of cultivars for which
at least one report included the given flavour / effect tag
(i.e. we excluded columns of zeros from the correlation
analysis). As an example, if a given “strain” with 10 re-
ports neither included the ‘Blue cheese’ flavour, nor the
‘Uplifted’ effect, this category pair did not include this
variety in the correlation analysis. This restricted the
analysis only to the valid or more representative
cultivars.

Random forest classifiers
To investigate whether effect and flavour tags could dis-
criminate between different cannabis “species“ tags
assigned by users, we trained and evaluated (5-fold
stratified cross-validation) machine learning classifiers to
distinguish the 265 “indicas” from the 171 “sativas” in
the dataset, using as features the corresponding E(s) and
F(s) vectors for each cultivar s.
Classifiers were based on the random forest algorithm

(Hastie 2009; James et al. 2013), as implemented in
scikit-learn (https://scikit-learn.org/), and a detailed ex-
planation can be found in the additional file 1, section 2.
This algorithm builds upon the concept of a decision
tree classifier, in which the samples are iteratively split
into two branches, depending on the values of their fea-
tures. For each feature, a threshold is determined so that
the samples are separated to maximize a metric of the
homogeneity of the class labels assigned to the resulting
branches. The algorithm stops when a split results in a
branch where all the samples belong to the same class,
or when all features are already used for a split. This
procedure is prone to overfitting, because a noisy or un-
reliable feature selected early in the division process
could bias the remaining part of the decision tree. To

attenuate this potential issue, the random forest algo-
rithm creates an ensemble of decision trees based on a
randomly chosen subset of the features. After training
each tree in the ensemble, the probability of a new sam-
ple belonging to each class was determined by the aggre-
gated vote of all decision trees. We divided our dataset
into 5 equal parts and used 4 parts to train the model
and the remaining part for testing (5-fold stratified
cross-validation). This procedure results in a robust tool
for sensitivity analysis (Ermagun et al. 2020; Kamalov
2019), which is valuable in the case of our crowdsourced
data. We trained random forests using 1.000 decision
trees and a random subset of features of size equal to
the rounded square root of the total number of features.
The quality of each split in the decision trees was mea-
sured using Gini impurity, and the individual trees were
expanded until all leaves were pure (i.e. no maximum
depth was introduced). No minimum impurity decrease
was enforced at each split, and no minimum number of
samples were required at the leaf nodes of the decision
trees. All model hyperparameters are detailed in the
scikit-learn documentation (https://scikit-learn.org/).
To assess the statistical significance of the output, we

trained and evaluated 1.000 independent random forest
classifiers using the same features but after scrambling
the class labels. We then constructed an empirical p-
value by counting the number of times that the accuracy
of the classifier based on the scrambled labels exceeded
that of the original classifier. The accuracy of each indi-
vidual classifier was determined by the area under the
receiver operating characteristic curve (AUC).

Natural language processing of written unstructured
reports
Text preprocessing was performed using the Natural
Language Toolkit (NLTK, http://www.nltk.org/) in Py-
thon 3.4.6. The following steps were applied: 1) discard-
ing all punctuation marks (word repetitions allowed)
and splitting into individual words, 2) word conversion
to the root from which the word is inflicted using NLTK
(i.e. lemmatization), 3) conversion to lowercase, 4) after
lemmatization, words containing less than two charac-
ters were discarded (Sanz and Tagliazucchi 2018).

Table 1 Counts of user reports by cultivar

Reports Users Reports by cultivar by user Reports by cultivar

Partition N cultivars N tot % tot N.I. %N.I. N users % =1 % > 1 % > 2 % > 3 %median (IQR,Skew) %max %median (IQR,Skew) max

All reports 887 100.901 100 983 1 43.925 57 43 21 12 0.61 (1.2,3.44) 40 54 (98.5,3.64) 1456

Sativa 171 18.193 18 211 1 10.824 67 33 12 6 0.74 (1.36,2.74) 18 52 (72,4.15) 1373

Indica 265 30.977 31 316 1 16.803 54 37 15 8 0.59 (1.13,3.95) 38 61 (106,4.22) 1456

Hybrid 451 51.731 51 456 1 26.259 61 39 17 10 0.58 (1.18,3.4) 40 52 (100.5,2.87) 1225

Summaries of reports, users, reports by cultivar, and reports by cultivar by user (August 2018). N.I.: Anonymous; tot: total; IQR: Interquartile range; Skew calculated
using R defaults, as in DeCarlo (1997)
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To quantitatively explore the semantic content of the
reports we used Latent Semantic Analysis (LSA) (Land-
auer et al. 1998; Martial et al. 2019; Sanz and Tagliazuc-
chi 2018) [see additional file 1, section 2] over all
combined cultivar reports (N = 100.901) in the subsam-
ples of “indicas“(30.977 reports from 265 cultivars) and
“sativas“(18.193 reports from 171 cultivars). For this, we
constructed a matrix Awj containing in its w,j position
the weighted frequency of the w-th term in the com-
bined reports of the j-th strain. The weighted frequency

(tf-idf weighting) was computed as f wd ¼ log jDj
f dw

, where

fwd represents the frequency of word w in document d,
|D| indicates the total number of documents, and fdw is
the fraction of documents in which word w appears. To
avoid very common / uncommon words, we kept only
those appearing in more than 5% / less than 95% of the
documents, respectively.
LSA was applied to reduce the rank of Awj, thus redu-

cing its sparsity and identifying different words by se-
mantic context. For this purpose, the matrix was first
decomposed using Singular Value Decomposition (SVD)
into the product of three matrices (Huang and Narendra

2008) as Â ¼ Û � Ŝ � Ŵ , where Û contains the matrix

eigenvectors, Ŝ is a diagonal matrix containing the or-

dered eigenvalues of ÂÂ
T
, and Ŵ contains the eigenvec-

tors of Â
T
Â . To reduce the dimensionality of the

semantic space, only the first 50 singular values of Ŝ

were retained, yielding the truncated diagonal matrix Ŝ50

. From this matrix, the rank reduced matrix was com-

puted as Â50 ¼ Û50 � Ŝ50 � Ŵ 50 . Â50 is here referred to
as the reduced rank word-document matrix. By comput-
ing the Spearman correlation coefficient between the

columns of Â50 it is possible to estimate the semantic
similarity between the written reports associated with
pairs of cultivars. Alternatively, this can be conceptual-
ized as a network, where nodes correspond to cultivars
and links are weighted by the semantic similarity be-
tween their associated sets of reports. The choice of rank
50 was validated by investigating the stability of the
number of communities and the modularity values de-
tected in this network using the Louvain algorithm. This
validation is included as an additional figure (see Add-
itional file 1).

Principal component analysis and topic detection
To reduce the term-document matrix into a smaller
number of components capturing topics appearing re-
currently in the corpus of reports, we performed a prin-
cipal component analysis (PCA) using MATLAB SVD
decomposition algorithm (see additional file 1, section
2). We analyzed the first five components, i.e. the

components explaining most of the variance. Each com-
ponent consisted of a combination of words present in
the vocabulary, and the coefficients were used to repre-
sent the importance of the words.

Association between tags and unstructured written
reports
To provide an example of the relationship between the
reported effect tags and the unstructured written re-
ports, we performed the LSA analysis on two cultivars
with a large number of reports: a cultivar representative
of the “sativa” tag (Super lemon haze, 1.373 reports), and
another representative of the “indica” (Blueberry, 1.456
reports). In this case, the matrix Aij was constructed so
that rows represented unique terms in the vocabulary,
and columns represented individual reports (i.e. the re-
ports were not pooled for each “strain”). We then per-
formed PCA for each of the cultivars and retained the
first 25 terms included in the first five components,
comparing them afterwards to the most frequently re-
ported effect tags for each “strain”. The semantic com-
parison was performed using the Datamuse API (www.
datamuse.com), a word-finding engine based on word2-
vec (Minarro-Gimenez et al. 2014), an embedding
method using shallow neural networks to map words
into a vector space with the constraint that words
appearing in similar contexts are also close in the vector
space embedding (see additional file 1, section 2). We
applied this tool to measure the mean distance of each
tag to the words in each component, and then compared
this distance to the one obtained using random English
words extracted from www.wordcounter.net/random-
word-generator.

Terpene and cannabinoid data
Cannabinoid and terpene profiles of commercial samples
of cannabis cultivars were manually downloaded from
the PSI Labs webpage (psilabs.org, retrieved in August
2018). PSI Labs is an ISO 17025 accredited Safety Com-
pliance Facility, based in Ann Arbor, Michigan state, li-
cenced by Michigan State for testing medical and
recreational cannabis samples. As detailed in the web-
site, cannabinoid content was assessed using high-
performance liquid chromatography (HPLC) with a
diode-array detector (DAD), and terpene content was
assessed using gas chromatography–mass spectrometry
(GC-MS). This website contains a large number (>
1.600) of test results, with mass spectrometry profiles for
14 cannabinoids and 33 terpenes. We downloaded test
results corresponding to cultivars with more than 10 re-
ports in Leafly, yielding a sample of 443 test results from
183 different cultivars. We discarded terpenes and can-
nabinoids that were reported in less than three cultivars,
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resulting in profiles comprising 10 cannabinoids and 25
terpenes.

Results
Following our first hypothesis, we applied supervised
and unsupervised machine learning algorithms to the
subjective effect tags and recovered cultivar clustering
into similar breeds. Also, metrics of cultivar similarity
based on self-reported effects allowed machine learning
classification into the species tag as Cannabis “sativa”
and Cannabis “indica”. This network is represented in
Fig. 1a using the ForceAtlas 2 layout, which increases
the proximity of nodes with strong connections. The
Louvain algorithm produced a partition with modularity
Q = 0.264 and a total of 18 modules, of which the largest
five contained ≈ 98% of all cultivars, see Supplemen-
tary information 5. The network color-coded by species
tags showed a clear separation of “indicas” and “sativas”,
with cultivars labeled as “hybrids” located in between.
Module 1 contained most of the “sativa” cultivars, while
“indicas” and “hybrids” appeared distributed across the
other modules.
Strains with names indicative of particular flavours

clustered together in this network. Sub-panels I-VI (Fig.
1b) zoom into different regions of the network, showing
that cultivars with similar naming conventions were
strongly connected in the effect similarity graph. This
was the case for lemons and diesels (I), skunks (II),
grapes, cherries and berries (III), pineapples, oranges

and strawberries (IV), fruits, cheeses and mangos (V),
and blueberries (VI). We also described these groups by
their general category, e.g. “lemons”, “grapefruits”,
“strawberries” were labeled “fruits”. This grouping sug-
gests the presence of correlations between effect and fla-
vour tags, a possibility which is explored in the following
sections.
Using the effect tag frequency vectors E(s) as features

in a random forest classifier trained to distinguish “indi-
cas” from “sativas” tags resulted in a highly accurate
classification (Fig. 1c), with <AUC> = 0.9965 ± 0.0002
(mean ± standard deviation [STD], p < 0.001).
Flavour tags were also capable of characterizing com-

mercial cultivars in terms of the given species tag. Fig-
ure 2 shows the network constructed using flavour
similarity to weight the links between cultivars, e.g. the
correlation between the F(s) vectors. The resulting net-
work is shown in Fig. 2a Application of the Louvain al-
gorithm yielded Q = 0.221 and a total of 19 modules,
with the four largest containing ≈ 98% of all cultivars,
see Supplementary information 5. In this case, modules
composed predominantly of a single species tag were no
longer clearly visible; however, a gradient of species tags
(from “indicas” to “hybrids” to “sativas”) could be ob-
served from top to bottom.
As we observed in the case of reported effects, flavours

also showed that not only cultivars with similar naming
conventions were grouped together, but also that their
grouping was related to the flavours represented in their

Fig. 1 Analysis of the effect similarity network allowed supervised and unsupervised cannabis species classification. A. Effect similarity networks,
with nodes representing cultivars and spatial proximity reflecting the Spearman correlation of the corresponding effect frequency vectors. The left
panel is color-coded based on the results of modularity optimization using the Louvain algorithm, while the right panel is color-coded based on
species tags (“indica”, “sativa”, “hybrids”). B. Subpanels zooming into different regions of the networks to show that cultivars sharing naming
conventions were grouped together. C. Histogram of AUC values obtained over 1000 iterations of random forest classifiers using the effect
frequency vectors as features and species tags (“indica” and “sativa”) as labels. “Randomized” indicates counts of AUC values obtained after
randomly shuffling the sample labels
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names (Fig. 2b). For instance, blueberries were grouped
together and close to a cluster of grapes (I), fruit and
cheese cultivars were in the same subpanel (II), fruit-
related cultivars (pineapple, tangerine, citrus, orange)
were grouped together (III), as well as skunks and diesels
(IV), mangos and strawberries (V), with lemons appear-
ing cohesively clustered together (VI). In this case, we
must consider the possibility of bias due to the cultivar
names in the reported flavour tags.
Interestingly, when using the flavour tag frequencies as

features in a random forest classifier trained to distin-
guish “indicas” from “sativas”, we also obtained a highly
accurate classification (Fig. 2c), with <AUC> = 0.828 ±
0.002 (mean ± STD, p < 0.001).
According to our next hypothesis, we evaluated the cor-

relations between effect and flavour tags across cultivars,
establishing a relationship between effects and flavour
tags. The results are shown in Fig. 3. We found significant
(p < 0.05, FDR-corrected) negative and positive effect-
flavour correlations. Figure 3a shows negative correlations,
i.e. inverse relationships between the frequency of the re-
ported effect and flavour tags, while Fig. 3b illustrates
positive correlations. The frequency of unpleasant subject-
ive effects, such as “anxious”, “dizzy”, “headache” and
“paranoid”, correlated negatively with the frequency of al-
most all flavour tags, meaning that users tended to avoid

the use of flavour tags when describing unpleasant experi-
ences. Complementary, we correlated cannabinoid con-
tent and reported effects for 183 “strains” that included
cannabinoid content from PSI Labs and did not find an
association between negative effects and THC content in
this sample (see Supplementary Fig. 5). This could be ex-
plained by considering that negative subjective experi-
ences may outweigh flavour or scent perception. This
result also suggests that in these specific experiences the
appreciation of aromatic and/or flavour variables is under-
mined by the overwhelming subjective effects. In these
cases, flavors cannot explain unpleasant effects. Further
inspection of Fig. 3a and b reveals that certain flavours,
such as “berry”, “blueberry”, “earthy”, “pungent” and
“woody”, were negatively correlated with subjective
stimulant effects, such as “creative” and “energetic”,
and at the same time presented positive correlations
with soothing effects such as “relaxed” and “sleepy”.
Other flavours, such as “citrus”, “lime”, “tar”, “nutty”,
“pineapple” and “tropical” presented the opposite be-
haviour, i.e. they correlated negatively with soothing
effects (“relaxed”, “sleepy”) and positively with stimu-
lant effects (“creative”, “energetic”). The fact that the
aforementioned flavours presented inverse correlation
patterns with respect to opposite psychoactive effects
adds support to the validity of this analysis.

Fig. 2 Analysis of the flavour similarity network allowed supervised and unsupervised cannabis species tag classification. A. Flavour similarity
networks, with nodes representing cultivars and spatial proximity reflecting the Spearman correlation of the corresponding effect frequency
vectors. The left panel is color-coded based on the results of modularity optimization using the Louvain algorithm, while the right panel is color-
coded based on species tags (“indica”, “sativa”, “hybrid”). B. Subpanels zooming into different regions of the networks show that cultivars sharing
naming conventions and flavours were grouped together. C. Histogram of AUC values obtained from 1000 iterations of random forest classifiers
using the flavour frequency vectors as features and species (“indica” and “sativa”) as labels. “Randomized” indicates counts of AUC values obtained
after randomly shuffling the sample labels
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Next, we performed a hierarchical clustering of the ef-
fects and flavours according to their correlations (Fig.
3c). The main cluster separated unwanted effects from
the rest. The remaining clusters of subjective effects
were divided into three categories: soothing (“relaxed”,
“sleepy”), stimulant (“euphoric”, “creative”, “energetic”,
“talkative”) and other miscellaneous effects commonly
associated with cannabis use (“hungry”, “giggly”, “happy”,
“dry mouth”, “dry eyes”, “tingly” and “aroused”). It is

important to note that this hierarchy emerged from con-
sidering effect-flavour correlations only. Consistently,
flavours were clustered according to their negative cor-
relations (“pungent”, “earthy”, “woody”, “berry”, “blue-
berry”) and their positive correlations (“citrus”,
“tropical”, “orange”, “pineapple”, “lemon”, “lime”).
Next, we tested our third hypothesis by objectively

analysing the unstructured written reports with LSA and
using this information to correlate cultivars and detect

Fig. 3 Associations between effects and flavours. A. Significant negative Spearman correlations between effects and flavours. B. Significant
positive Spearman correlations between effects and flavours. In both panels significant correlations are indicated using a color scale. Both panels
were thresholded at p < 0.05, FDR-corrected). C. Both positive (Panel A) and negative (Panel B) values grouped by hierarchical clustering of the
effects and flavours according to their correlations. Hierarchical clustering was determined by the standard method included in Scipy
(agglomerative clustering based on the Euclidean distance)
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recurrent topics, which allowed us to relate the reports
with the subjective effect tags. We found that the infor-
mation contained in the self-reported tags was consist-
ent with the free narratives provided by the users.
Unstructured written reports can provide complemen-
tary information, since users are not limited by prede-
fined sets of effect and flavour tags. We constructed a
network in which nodes represented cultivars and
links were weighted by their semantic similarity, mea-
sured by the correlation between the columns of the

rank-reduced term-document matrix Â50 (see the
“Natural language processing of written unstructured
reports” section in the Methods). The resulting net-
works are shown in Fig. 4a. Applying the Louvain al-
gorithm yielded Q = 0.058, with a total of 15 modules,
the largest 4 containing ≈ 98% of all cultivars, see
Supplementary information 5. Module distribution
was bimodal, i.e. when compared in terms of unstruc-
tured written reports, most cultivars fell into one of
two categories. When comparing the modular decom-
position with the species tag distribution, we found a
clear division in terms of “indicas” and “sativas”, with
“hybrids” in between. This division paralleled the two
main modules. Module 1 was conformed predomin-
antly by “sativas” and “hybrids”, while module 2 was
conformed by “indicas” and “hybrids”.

Next, we investigated the most frequently used terms
in the reports of all the cultivars taken together, and of
“indicas” and “sativas” considered separately. Figure 4b
presents word cloud representations of the 40 most
common terms for cultivars. The most common terms
related to the subjective perceptual and bodily effects
(terms like “amaze”, “strong”, “felt”, “favourite”, “body”),
therapeutic effects and/or medical conditions (“pain”,
“anxiety”, “relax”, “help”, “relief”, “focus”) and emotions
(“euphoric”, “anxiety”, “happy”, “confusion”). It is im-
portant to note that, due to limitations in the amount of
available data, this analysis used single term representa-
tions (1-g), therefore words used in positive or negative
contexts could not be differentiated, e.g. the term “anx-
iety” could appear in “This helped calm my anxiety” or
in “This caused me anxiety” without distinction. Half of
the most representative words were common to both
“indicas” and “sativas”, such as “anxiety,” “amaze”, “ef-
fect”. The main difference between species tags emerged
after excluding terms common to both, resulting in
words such as “focus”, “euphoric”, “energetic” for sativas,
and “insomnia”, “enjoy”, “flavour” for “indicas”. A de-
tailed analysis of the main 5 components by species can
be found in Supplementary Information 4 (see Supple-
mentary Fig. 7).
To relate the free narrative reports to the subjective ef-

fect tags, we investigated two cultivars with a large

Fig. 4 Analysis based on the semantic content of unstructured written reports. A. Networks constructed based on the semantic similarity of the
reports associated with cultivars. The left panel is color-coded based on the results of modularity maximization using the Louvain algorithm,
while the right panel is color-coded based on species tag. B. Word clouds representing the most frequent terms appearing in the reports of all
cultivars combined (left), “sativas” (middle) and “indicas” (right)
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number of reports: Super Lemon Haze (“sativa”, N =
1.373, most frequently reported tags: “happy”, “ener-
getic”, “uplifted”) and Blueberry (“indica”, N = 1456, most
frequently reported tags: “relaxed”, “happy”, “euphoric”).
We first applied PCA to the corresponding rank-
reduced term-document frequency matrices to obtain
the main topics for each “strain”. The word clouds with
the highest-ranking terms for the first 5 principal com-
ponents of each cultivar are presented in Fig. 5a. The
variance explained by the first 5 components was 21%
for Super Lemon Haze and also 21% for Blueberry. Next,
we computed the semantic distance between the most
frequent effect tags of each cultivar and the top 40
words in each of the principal components. The object-
ive of this analysis was to evaluate whether the unstruc-
tured written reports reflected the choice of predefined
tags made by the users. As shown in Fig. 5b, the most
frequently reported effect tags for each cultivar showed a
prominent projection into all the components, as com-
pared to randomly chosen words. This suggests that
users selected predefined tags consistently with the con-
tents of their written reports.

Terpene and cannabinoid content
Finally, in order to test our last hypothesis, we investi-
gated the relationship between the user reports and the
molecular composition of the cultivars. For this purpose,
we accessed publicly available data of cannabinoid con-
tent provided in the work of Jikomes and Zoorob
(Jikomes and Zoorob 2018), as well as assays of canna-
binoid and terpene content from the PSI Labs website.
The first dataset contains information on THC and

CBD content for all 887 cultivars studied in this work.
The relationship between the content of both active can-
nabinoids is plotted in Fig. 6a, left panel. As reported by
Jikomes and Zoorob, the cultivars fell into three general
chemotypes based on their THC:CBD ratios (Jikomes
and Zoorob 2018), consistent with previous findings
(Hazekamp et al. 2016; Hillig and Mahlberg 2004;
Jikomes and Zoorob 2018). Most of the investigated cul-
tivars fell into chemotype I (Chemotype I: 94.6%, Che-
motype II: 4.8%, Chemotype III: 0.6%), indicating high
THC vs. CBD ratios. This was replicated using the can-
nabinoid content data obtained from PSI Labs (N = 433
individual flower samples corresponding to 183 different

Fig. 5 Correspondence between topics extracted from unstructured written reports and the choice of predefined tags. A. Word clouds of the first
five principal components for the cultivars Super Lemon Haze and Blueberry, indicating the most representative topics within the associated
reports. B. Radar plots showing the mean semantic similarity between the words in each topic and the most frequently chosen effect tags for
both cultivars. It can be seen that the semantic similarity is the highest for the most frequently used tags, and the lowest for a set of randomly
chosen words unrelated to the effects of cannabis
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cultivars), as shown in Fig. 6a, right panel. Again, the
majority of the assays corresponded to chemotype I
(Chemotype I: 90.3%, Chemotype II: 6%, Chemotype III:
3.7%).
Figure 6b shows the compiled data for 10 cannabi-

noids and 26 terpenes across multiple samples of a culti-
var included in the PSI Labs dataset. While some
terpenes appeared to be robustly detected in the “strain”,

the relatively large spread indicated a considerable level
of variability.
Next, we addressed in more detail the association be-

tween cannabinoid content, terpene content, flavours, ef-
fects, and cannabis species tag. For this purpose, each of
the 183 cultivars in the PSI Labs dataset was described
by a cannabinoid and terpene vector. We computed the
Spearman correlation between these vectors to weight

Fig. 6 Chemical composition of cannabis cultivars. A. Scatter plot of CBD vs. THC (max/mean content) for all cultivars (left panel) and for the 183
cultivars included in the PSI Labs dataset, by dry % (right panel). The background is divided by chemotype (THC:CBD ratios), where Chemotype I
indicates 5:1, Chemotype III indicates 1:5, and Chemotype II is in the middle of both (Jikomes and Zoorob 2018). While three different
chemotypes could be identified, in both cases chemotype I (high THC content) was clearly overrepresented in the data. B. Cannabinoid and
terpene content data extracted from PSI Labs. Left: boxplots of the mean dry content of 10 cannabinoids and 26 terpenes across multiple
samples of the same strain. Right: the variability of the mean dry content across samples of the same cultivar (mean ± STD)
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the links connecting the nodes that represented the cul-
tivars. This resulted in cannabinoid and terpene similar-
ity networks, which are shown in Fig. 7a and b,
respectively. The network on the left panel of Fig. 7a is
color-coded based on the application of the Louvain

algorithm (Q = 0.041) to the cannabinoid similarity net-
work, yielding a total of 8 modules, with the largest 3
represening ≈ 94% of the cultivars. This modular struc-
ture paralleled the classification into the three
chemotypes.

Fig. 7 Association of cultivars, effect tags, and flavour tags in terms of chemical composition. A. Network of similarity in cannabinoid content.
Each node represents a commercial “strain”, and their spatial proximity is based on the correlation between their corresponding cannabinoid
profiles. Nodes in the left panel are color-coded based on modularity analysis, while nodes in the right panel are color-coded based on species
tags. B. Same analysis as in Panel A, but for the similarity in terpene content. C. The network on the left represents the association between
flavour tags, based on the correlation of the terpene profiles averaged across all cultivars for which the corresponding flavour tags were reported.
The network in the right presents the same analysis for effect tags
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The network on the right is color-coded based on can-
nabis species tag: the first and largest module contained
cultivars belonging to all species tags (similar to chemo-
type I); another module, situated in the middle, pre-
sented a more balanced proportion of species tags, but
also contained a smaller proportion of cultivars (similar
to chemotype II), and the remaining module was com-
posed mostly by “hybrids” (as in chemotype III). Since
this classification used more information than the THC:
CBD ratios, it corresponds to a multi-dimensional
analogue of the standard chemotype characterization.
Figure 7b shows the network obtained by correlating

cultivars by their terpene vectors. The network on the
left is color-coded based on the results of the Louvain al-
gorithm (Q = 0.245), yielding only two modules. The
network on the right is color-coded based on cannabis
species tags. Since there are multiple terpenes in canna-
bis, without equivalents of main active cannabinoids
such as THC and CBD, the chemical description in
terms of terpenes is necessarily multi-dimensional. As
with the semantic analysis of written reports, the associ-
ation of cultivars based on the terpene profiles was bi-
modal and without a clear differentiation in terms of
species tags.
Finally, we explored how effects and flavours were re-

lated based on the terpene content of the cultivars (Fig.
7c). We generated a terpene vector associated with each
effect and flavour tag by averaging the terpene content
across all the cultivars for which that tag was reported.
The left panel of Fig. 7c shows how flavour tags (nodes)
relate in terms of the correlation of their associated ter-
pene vectors (weighted links). Modularity analysis (Q =
0.324) yielded a module comprising intense and pungent
flavours (“skunk”, “diesel”, “chemical”, “pungent”) com-
bined with citric flavours (“lemon”, “orange”, “lime”, “cit-
rus), a second module containing sweet and fruity
flavours (“mango”, “strawberry”, “sweet”, “fruit”, “grape”),
and a third module with a mixture of salty and sweet fla-
vours (“cheese”, “butter”, “vanilla”, “pepper”), see Supple-
mentary information 5. Modularity analysis (Q = 0.194)
of the network of effect tags associated by terpene simi-
larity (Fig. 7c, right panel) yielded three modules resem-
bling the clustering of effects presented in Fig. 3c, where
we found groups consisting of subjective unwanted ef-
fects, stimulant effects and soothing effects, with an
intermediate group associated with miscellaneous effects
of smoked cannabis. Module 1 contained mostly stimu-
lant effects (“energetic”, “euphoric”, “creative”, “talk-
ative”, among others), module 2 contained soothing
effects (“sleepy”, “relaxed”), and module 3 contained un-
wanted effects such as “headache”, “dizzy”, “paranoid”
(with the exception of “anxious”, which was included in
module 2). The fact that the network of effects associ-
ated by terpene content similarity reflected the

hierarchical clustering of effects obtained from flavour
association (Fig. 3c) reinforces the link between flavours
and the psychoactive effects of cannabis.

Discussion
We presented a novel synthesis of multi-dimensional
data on a large number of cannabis cultivars with the
purpose of developing an integrated view of the relation-
ship between reported subjective effects, perceptual pro-
files (flavours) and chemical composition (terpene and
cannabinoid content). As a result of this analysis, we
established that cannabis species tags can be inferred
from self-reported effect and flavour tags (Figs. 1 and 2,
panel C), as well as from unstructured written reports,
which also revealed that topics associated with subjective
effects had different prevalence in “indicas” compared to
“sativas”. This classification was obtained using super-
vised (random forests) and unsupervised (network
modularity maximization) methods, confirming our first
hypothesis, which stated that these methods would
group similar cultivars together. As suggested by the
previous literature (Casano et al. 2011; Fischedick and E.
S. 2015; Pollastro et al. 2018), we found that classifiers
based on the reported flavours achieved high accuracy in
the classification of commercial cultivars. Furthermore,
flavour and effect tags did not manifest independently,
but presented significant correlations (Russo 2011,
2019), which we expected in our original hypothesis. Fi-
nally, in spite of high variability in the reported chemical
compositions, we corroborated the presence of expected
flavour-terpene associations, validating our last hypoth-
esis. In the following, we discuss the implications of our
work in the context of leveraging large volumes of data
produced under naturalistic conditions in combination
with quantitative chemical analyses for the classification
and characterization of commercial cannabis cultivars.
The practical relevance of our results is manifest in

the need to develop fast, cheap and reliable methods for
cannabis cultivar characterization. We found that avail-
able crowdsourced data was useful to recognize species
(Figs. 1 and 2, panel C). Over the past years, cannabis
plant species (“indica” / “sativa”) have been challenged
by the scientific community as reliable markers of the ef-
fects elicited by the consumption of the plant (Piomelli
and Russo 2016; Pollastro et al. 2018; Russo 2019),
pointing towards objective chemotype descriptors
(mainly THC:CBD ratios) as a new gold standard. Ac-
cording to this characterization, THC is often considered
the active compound related to many of the negative
outcomes of cannabis consumption (Volkow et al. 2016),
while CBD (or combinations of CBD and THC) is asso-
ciated with most of the purported medicinal properties
(Fogaça et al. 2018; Hahn 2018; Hurd et al. 2019; Loren-
zetti et al. 2016; Nadulski et al. 2005; Nuutinen 2018;
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Russo 2019; Vandrey et al. 2015). Although there is no
doubt that a precise chemical description of the plant is
the most accurate and reliable predictor of the elicited
subjective effects, this approach is likely impractical in
the present market (Nie et al. 2019). In the first place,
this approach requires technology for quantitative chem-
ical analysis that is beyond the reach of many dispensar-
ies and growers. Furthermore, variations in the
concentration of cannabinoids are high even within the
same “strain”, depending on factors such as age, environ-
mental conditions, generation, and geographical location
(Casano et al. 2011; Fetterman et al. 1971; Nuutinen
2018; Russo 2011). Finally, the predictive value of che-
motypes has been questioned in markets where con-
sumers increasingly demand higher THC content
(Freeman et al. 2019, Freeman et al. 2018; Jikomes and
Zoorob 2018; Smart et al. 2017).
Our results suggest that perceptual profiles (reported

flavours) and terpene quantification show merit for the
characterization of cannabis cultivars. Both tagged sub-
jective effects and perceived flavours were capable of
explaining the Leafly species tags given by the users with
high accuracy (Figs. 1 and 2, panel C). It should be noted
that the word “explain” used in this context refers to the
estimation of the class of a sample given the fitted model
(Shmueli 2010). Concerning the interpretation of the
machine learning classification, we see two possible rea-
sons for the significant classification into “indicas”, “sati-
vas” and “hybrids”. First, the classifications made by the
users might not be entirely arbitrary and could be based
on botanical (or other) characteristics that are suggestive
of different classes of breeds. Second, there could be
biases not related to the breeds per se that drive the as-
sociations made by the users. In either case, even if the
tags do not reflect a proper botanical classification, we
consider it important that the assessments of the breeds
made by the users are clustered, and that these clusters
reflect classifications that (even if outdated in botanical
terms) are still relevant to label cannabis in a commer-
cial context. Although it has been recently proposed by
some authors to eliminate this species classification re-
garding cannabis plant (Piomelli and Russo 2016) our
results may support that some of the underlying differ-
ences amongst these categories (Lamarck 1785) were
conserved over time, in agreement with the results ob-
tained by Hilling and Mahlberg (Hillig 2004; Hillig and
Mahlberg 2004); even though more detailed chemical
characterizations should be obtained to assess this
speculation. Terpenes are highly conserved across gener-
ations (Aizpurua-Olaizola et al. 2016; Casano et al.
2011), can be synergistic with cannabinoids (Russo
2011), and have psychoactive properties by themselves
(Nuutinen 2018). It follows from our analysis that users
likely count on perceptual faculties to select cultivars

when seeking specific effects. Further research in con-
trolled laboratory settings is required to test the capacity
for assessing psychoactive effects based on sensory infor-
mation. Moreover, the reported flavour-effect correlation
could provide users valuable information concerning the
expected effects based on the aroma of the plant. In par-
ticular, Fig. 3 shows the dendrogram structure for flavors
and effects. Flavours fell into four broad categories:
earthy, citrics, berries, and others. Effects were clustered
into three main categories, negative, uplifted and re-
laxed. The correlation analysis provided information
concerning the interaction between these two classifica-
tions. This result is consistent with the previous rich lit-
erature on flavour-effect relationships (Blank et al. 2011;
Delwiche 2004; Holland and Gallagher 2004; Levin et al.
1990; Small and Prescott 2005) and suggests a possible
modulating effect of flavours on subjective effects.
There is increasing evidence that the subjective effects

of cannabis are a result of the synergy between a diverse
group of active ingredients which include THC and
CBD, alongside other cannabinoids and terpenes (Baron
2018; Nuutinen 2018; Russo 2011). This observation
supports the need for a multi-dimensional
characterization that does not neglect terpene content,
and therefore the associated flavours. We found that,
even with overall high levels of THC across all cultivars
(Jikomes and Zoorob 2018), the subjective experiences
reported by users were capable of clustering cultivars by
species tags, not only based on effects but also on the re-
ported flavours. Moreover, the clustering of cultivars
with names evoking certain flavours, even while not bo-
tanically validated (Clarke and Merlin 2013), supported
that terpene content is a well-preserved property in the
cultivars.
As in the “sativa”-“indica” gradient revealed by the

analysis of effect and flavour tags, the semantic analysis
of unstructured written reports clearly captured the dis-
tinction between “sativa like” and “indica like” cultivars.
It is interesting to note that, in spite of overall high
THC content across all cultivars, the specific words that
emerged from LSA topic detection applied to reports of
“sativas” and “indicas” represented a large proportion of
positive and desired effects, such as relaxing and uplift-
ing effects (Corral 2001). This is consistent with the rela-
tively low value of Q for the LSA network among all
cultivars (see Supplementary information 5). Natural
language analysis also established that, even while thera-
peutic and subjective effects were thoroughly discussed
throughout the written reports, seed acquisition and
plant growing were also prominently featured.
Concerning terpene and cannabinoid profiles, it is im-

portant to note that cannabinoids showed a clear trimo-
dal structure, in accordance with the three chemotypes
described by Jikomes & Zoorob (Jikomes and Zoorob
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2018), which were obtained based only on THC and
CBD concentrations. The subjective effect tags could be
clustered into three main groups, congruent with
those obtained from the Leafly flavour tags: Soothing,
Stimulant, Unpleasant (Fig. 3 and Fig. 7, c). This led
us to believe that similar behavior would be observed
when reporting negative or unwanted effects (which
apply arbitrarily to plants with different terpene pro-
files). This suggests that factors independent of plant
characteristics (e.g. set and setting) are the principal
cause of negative experiences, as already suggested by
previous works (Hartogsohn 2016; McElrath and
McEvoy 2002). Moreover, even though the modules
were stable, the Q values were low, which is consist-
ent with the large variability of this dataset (see Sup-
plementary information 5). The fact that a trimodal
grouping of the cultivars was also obtained based on
10 cannabinoids could imply that the complex inter-
actions of a larger number of active molecules might
project into a reduced tri-dimensional space without
significant loss of information. The concept of multi-
dimensional chemotype should be further explored in
controlled laboratory conditions to develop more ac-
curate objective descriptors of different cannabis culti-
vars and their elicited effects. Conversely, cultivars
were organized bimodally by their terpene content.
This observation is interesting in the context of the
flavour-effect associations identified in our work,
which were essentially organized into two groups:
stimulating and sedative effects. These associations
add support to the active role of terpenes (Nuutinen
2018). The analysis of effect association via terpene
content similarity yielded results convergent with
those obtained from correlating flavour and effect
tags, adding further support to the suggestion that
psychoactive effects could by mediated by terpenes.
The strengths of our study stem from the analysis

of large volumes of data impossible to obtain under
controlled laboratory conditions, but this approach
also leads to limitations inherent to self-reporting by
users, preventing objective verification of the con-
sumed cultivars, as well as their doses or whether
the cultivar names biased the perceptual reports. To
avoid bias given by “strain” names, the optimal solu-
tion could be a blind rating for all “strains”. While
this data is not available at the moment, it could be
valuable in the future. To partially address this limi-
tation, we carefully analyzed our sample, ensuring
that the maximum possible number of non-
independent samples was one order of magnitude
minor than the size of our dataset, and that 5-folds
cross validation was always used to maintain an in-
dependent sample for model evaluation. The possi-
bility of a certain measure of dependence within our

dataset remains, which should be considered as a
limitation of our analysis. However, commercial
strains with similar flavors were clustered together
by their terpene content, suggesting that “strain”
names are driven by the chemical composition of the
plants. Given that consumption of commercial can-
nabis might carry expectations (e.g. related to culti-
var names, reviews, or past experiences by the user),
we stress that our results could be influenced by
these and other contextual variables, which is usually
the case in large-scale studies of psychoactive drugs
in naturalistic settings (Carhart-Harris et al. 2018;
Olson et al. 2020). Conducting this kind of research
following placebo-controlled designs is impossible,
therefore our results are valuable yet only within the
boundaries imposed by these limitations. Concerning
the methodology, even though the Louvain algorithm
is one of the most popular clustering methods used
in the bibliography, recently there has been evidence
that this method could present certain issues regard-
ing community identification (Traag et al. 2019).
This should be taken into account when drawing
conclusions from the clustering of the data. Limita-
tions are also inherent to the assumption of cannabis
cultivars as having homogeneous chemical composi-
tions. Previous work showed that cannabinoid con-
tent can present ample variation within single
cultivars (Fischedick and E. S. 2015; Jikomes and
Zoorob 2018), and our results show that similar con-
siderations apply to terpene profiles. Given our re-
sults, we can hypothesize that large-scale chemical
screening of cannabinoid content and terpenes
should reveal systematic associations between both
variables, and that these associations should parallel
those here presented. Moreover, it has long been
recognized that flavour profiles interact with pleasur-
able subjective effects in other drugs, such as the
case of tobacco smoked in cigarettes (Blank et al.
2011; Levin et al. 1990), with flavor-effect interac-
tions being broadly recognized and studied in terms
of their neurophysiological basis (Delwiche 2004;
Small and Prescott 2005) and studied on this neurophysio-
logical basis (Holland and Gallagher 2004). Our results
suggest similar interactions in the case of cannabis: be-
sides the main psychoactive compounds (cannabinoids),
flavours and odours (depending on terpenes and fla-
vonoids) can exert, modulate and/or interact with the
subjective effects elicited by cannabis. Future studies
could address a smaller sample of cultivars more
thoroughly investigated in terms of their chemical
composition, thus allowing the study of correlations
between self-reported subjective effects, flavours, and
environmental factors that could impact on cannabin-
oid and terpene content.
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Conclusions
After decades of prohibition, the legal cannabis industry
for therapeutic and recreational use is growing at a quick
pace, but nevertheless it is at its infancy. Considerable
evidence suggests that commercially available cultivars
are highly variable in their chemical composition and
subjective effects. In comparison, more mature indus-
tries, such as that of winery, have arrived at reliable stan-
dards (e.g. Merlot, Cabernet, Syrah) that are trusted and
understood by the consumers. By extracting information
from different sources of data, our work suggests that
the development of standards in the cannabis industry
should not only focus on psychoactive effects and canna-
binoid content, but also take into account scents and fla-
vours, which constitute the perceptual counterpart of
terpene and terpenoid profiles.
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