Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content
Fig. 3 | Journal of Cannabis Research

Fig. 3

From: A pharmacological characterization of Cannabis sativa chemovar extracts

Fig. 3

The effects of cannabis cultivar extracts were examined in the tail suspension assay. Mice were intravenously dosed with control (vehicle) or CTL-H01-H3 (0.1, 0.3, 1 and 3 mg/kg) (n = 10 per group, 1 animal excluded from 0.01, 0.3, and 1 mg/kg), CTL-H01-H2 (0.1, 0.3, 1, 3 and 6 mg/kg) (n = 6 per dose with 1 animal excluded from the 0.1 mg/kg group), CTL-P01-H1 (0.1, 0.3, 1, 3 and 6 mg/kg) (n = 6 per group, 2 animals and 1 animal excluded from the 1 mg/kg and 6 mg/kg groups, respectively), CTL-G01-H8 (0.03, 0.1, 0.3, 1 and 3 mg/kg) (n = 6 per group with 1 animal excluded from 0.03, 0.1, 0.3, and 1 mg/kg), CTL-G03-H2 (0.03, 0.1, 0.3, 1 and 3 mg/kg) (n = 6 per group with 1 animal excluded from 1 mg/kg) or CTL-X02-H1 (0.1, 0.3, 1, and 2 mg/kg) (n = 10 per group, 1 animal excluded from 0.01 and 2 mg/kg) cannabis cultivar extract. The curves have been summarized on the same set of axes to facilitate visual comparisons. Immobility time was evaluated 20 min post dose. Data are presented as the mean ± SEM. Data were fit using a 3 parameter log (agonist) vs. response non-linear regression model. Dosing was based on the Δ9-THC content of the cannabis cultivar extract, as analyzed by HPLC

Back to article page